Patents by Inventor Brett C. Walker

Brett C. Walker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7106138
    Abstract: A radio frequency (RF) driver amplifier system and method that provides linear in decibel gain control is provided. The RF driver amplifier system comprises a linear transconductor receiving an input voltage and providing a controlled current based on input voltage received, temperature compensation circuitry for varying current from the linear transconductor according to absolute temperature, an exponential current controller receiving current varied according to temperature and providing an exponential current in response, and an inductive degeneration compensator receiving exponential current and providing a control current to driver amplifier circuitry, thereby compensating for inductive degeneration due to at least one inductor in the driver amplifier circuitry. Control current passes from the inductive degeneration compensator to the driver amplifier circuitry. Output gain from the driver amplifier circuitry varies linearly in decibels with respect to the input voltage.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: September 12, 2006
    Assignee: Qualcomm Incorporated
    Inventors: Kenneth Barnett, Brett C. Walker, Kevin Gard
  • Patent number: 7076225
    Abstract: A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: July 11, 2006
    Assignee: Qualcomm Incorporated
    Inventors: Tao Li, Christian Holenstein, Inyup Kang, Brett C. Walker, Paul E. Peterzell, Raghu Challa, Matthew L. Severson, Arun Raghupathy, Gilbert Christopher Sih
  • Patent number: 7062229
    Abstract: In one embodiment, this disclosure describes a frequency synthesizer for use in a wireless communication device, or similar device that requires precision frequency synthesis but small amounts of noise. In particular, the frequency synthesizer may include a phase locked loop (PLL) and an integrated voltage controlled oscillator (VCO). The frequency synthesizer may implement one or more amplitude calibration techniques prior to enabling the PLL. For example, an amplitude calibration unit may be used to selectively activate switched unit current sources within a tail current source of the VCO. In this manner, the amplitude the signal generated by the oscillator can be adjusted without requiring closed-loop amplitude monitoring or control.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: June 13, 2006
    Inventors: Jeremy D. Dunworth, Brett C. Walker
  • Patent number: 6906592
    Abstract: A radio frequency (RF) driver amplifier system and method that provides linear in decibel gain control is provided. The RF driver amplifier system comprises a linear transconductor receiving an input voltage and providing a controlled current based on input voltage received, temperature compensation circuitry for varying current from the linear transconductor according to absolute temperature, an exponential current controller receiving current varied according to temperature and providing an exponential current in response, and an inductive degeneration compensator receiving exponential current and providing a control current to driver amplifier circuitry, thereby compensating for inductive degeneration due to at least one inductor in the driver amplifier circuitry. Control current passes from the inductive degeneration compensator to the driver amplifier circuitry. Output gain from the driver amplifier circuitry varies linearly in decibels with respect to the input voltage.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: June 14, 2005
    Assignee: Qualcomm Inc
    Inventors: Kenneth Barnett, Brett C. Walker, Kevin Gard
  • Patent number: 6888913
    Abstract: A frequency generating circuit utilizes a quad modulus prescaler in which two control signals are used to select the prescaler modulus. The modulus control signals are generated by a multistage counter in which two independent counting stages are used to generate the first and second modulus control signals. The first modulus control signal is at a first logic level when the associated counter is at a non-zero value and is at a second logic level when the associated counter reaches zero. The second modulus control signal is generated by a second counter and has a first logic value when the second counter is in a non-zero state and a second logic value when the second counter reaches zero.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: May 3, 2005
    Assignee: Qualcomm Incorporated
    Inventor: Brett C. Walker
  • Patent number: 6845083
    Abstract: A transmitter 108 converts a digital baseband signal input 150 for transmission by an antenna 114 to support multiple communication standards. An over-deviation phase multiplier 130 increases signal phase deviation by a factor of M. A digital phase modulator 176 applies trigonometric lookup tables. A digital intermediate frequency up-converter 132 up-shifts frequencies of desired signal content. First and second digital-to-analog converters (DACs) 134 and 136 use relatively low-bit operations, which add DAC noise 212. First and second low pass filters 138 and 140 apply rejection above frequencies of desired signal content. An analog I/Q modulator 142 converts from complex to real signals, adding an unwanted signal spaced from the desired signal content by an intermediate frequency multiple. A limiter 144 reduces amplitude modulated noise. An over-deviation phase divider 146 divides signal phase deviation by 1/M to reduce phase modulated noise.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: January 18, 2005
    Assignee: Qualcomm Incorporated
    Inventors: Steven M. Mollenkopf, Puay Hoe Andrew See, Brett C. Walker
  • Publication number: 20040155708
    Abstract: A radio frequency (RF) driver amplifier system and method that provides linear in decibel gain control is provided. The RF driver amplifier system comprises a linear transconductor receiving an input voltage and providing a controlled current based on input voltage received, temperature compensation circuitry for varying current from the linear transconductor according to absolute temperature, an exponential current controller receiving current varied according to temperature and providing an exponential current in response, and an inductive degeneration compensator receiving exponential current and providing a control current to driver amplifier circuitry, thereby compensating for inductive degeneration due to at least one inductor in the driver amplifier circuitry. Control current passes from the inductive degeneration compensator to the driver amplifier circuitry. Output gain from the driver amplifier circuitry varies linearly in decibels with respect to the input voltage.
    Type: Application
    Filed: November 3, 2003
    Publication date: August 12, 2004
    Inventors: Kenneth Barnett, Brett C. Walker, Kevin Gard
  • Patent number: 6711391
    Abstract: Techniques to linearly (in dB) adjust the gains of variable gain elements (i.e., variable gain amplifiers or VGAs) in a receiver or transmitter. An input control signal is provided to a conditioning circuit that conditions the control signal to achieve various signal characteristics. The input control signal is limited to within a particular range of values, temperature compensated, scaled (or normalized) to the supply voltages, shifted with an offset, or manipulated in other fashions. The conditioned signal is then provided to an input stage of a linearizer that generates a set of exponentially related signals. This is achieved using, for example, a differential amplifier in which the conditioned control signal is applied to the inputs of the differential amplifier and the collector currents from the differential amplifier comprises the exponentially related signals. An output stage within the linearizer receives the exponentially related signals and, in response, generates a gain control signal.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: March 23, 2004
    Assignee: Qualcomm, Incorporated
    Inventors: Brett C. Walker, Eric Zeisel, Gurkanwal S. Sahota
  • Publication number: 20040004506
    Abstract: A frequency generating circuit utilizes a quad modulus prescaler in which two control signals are used to select the prescaler modulus. The modulus control signals are generated by a multistage counter in which two independent counting stages are used to generate the first and second modulus control signals. The first modulus control signal is at a first logic level when the associated counter is at a non-zero value and is at a second logic level when the associated counter reaches zero. The second modulus control signal is generated by a second counter and has a first logic value when the second counter is in a non-zero state and a second logic value when the second counter reaches zero.
    Type: Application
    Filed: July 2, 2002
    Publication date: January 8, 2004
    Inventor: Brett C. Walker
  • Publication number: 20030227896
    Abstract: A transmitter 108 converts a digital baseband signal input 150 for transmission by an antenna 114 to support multiple communication standards. An over-deviation phase multiplier 130 increases signal phase deviation by a factor of M. A digital phase modulator 176 applies trigonometric lookup tables. A digital intermediate frequency up-converter 132 up-shifts frequencies of desired signal content. First and second digital-to-analog converters (DACs) 134 and 136 use relatively low-bit operations, which add DAC noise 212. First and second low pass filters 138 and 140 apply rejection above frequencies of desired signal content. An analog I/Q modulator 142 converts from complex to real signals, adding an unwanted signal spaced from the desired signal content by an intermediate frequency multiple. A limiter 144 reduces amplitude modulated noise. An over-deviation phase divider 146 divides signal phase deviation by 1/M to reduce phase modulated noise.
    Type: Application
    Filed: February 3, 2003
    Publication date: December 11, 2003
    Inventors: Steven M. Mollenkopf, Puay Hoe Andrew See, Brett C. Walker
  • Publication number: 20030189463
    Abstract: A charge pump circuit includes a charge pump current source configured for differential switching of an output current and a charge pump enable switch configured to turn on the charge pump current source prior to the differential switching of the output current and to turn off the charge pump current source after the differential switching of the output current, thereby saving a significant amount of current consumption by the charge pump circuit.
    Type: Application
    Filed: April 9, 2002
    Publication date: October 9, 2003
    Inventor: Brett C. Walker
  • Publication number: 20030171105
    Abstract: In one embodiment, this disclosure describes a frequency synthesizer for use in a wireless communication device, or similar device that requires precision frequency synthesis but small amounts of noise. In particular, the frequency synthesizer may include a phase locked loop (PLL) and an integrated voltage controlled oscillator (VCO). The frequency synthesizer may implement one or more calibration techniques to quickly and precisely calibrate the VCO. In this manner, the analog gain of the VCO can be significantly reduced, which may improve performance of the wireless communication device. Also, the initial state of the PLL may be improved to reduce lock time of the PLL, which may enhance performance of the wireless communication device.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 11, 2003
    Inventors: Jeremy D. Dunworth, Brett C. Walker
  • Publication number: 20030171106
    Abstract: In one embodiment, this disclosure describes a frequency synthesizer for use in a wireless communication device, or similar device that requires precision frequency synthesis but small amounts of noise. In particular, the frequency synthesizer may include a phase locked loop (PLL) and an integrated voltage controlled oscillator (VCO). The frequency synthesizer may implement one or more amplitude calibration techniques prior to enabling the PLL. For example, an amplitude calibration unit may be used to selectively activate switched unit current sources within a tail current source of the VCO. In this manner, the amplitude the signal generated by the oscillator can be adjusted without requiring closed-loop amplitude monitoring or control.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 11, 2003
    Inventors: Jeremy D. Dunworth, Brett C. Walker
  • Patent number: 6482137
    Abstract: A spinning exercise device manipulated by the user and to which weights may be added to increase the level of exercise of the user.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: November 19, 2002
    Inventor: Brett C. Walker
  • Publication number: 20020160734
    Abstract: A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
    Type: Application
    Filed: December 21, 2001
    Publication date: October 31, 2002
    Inventors: Tao Li, Christian Holenstein, Inyup Kang, Brett C. Walker, Paul E. Peterzell, Raghu Challa, Matthew L. Severson, Arun Raghupathy, Gilbert Christopher Sih
  • Publication number: 20020065175
    Abstract: A spinning exercise device manipulated by the user and to which weights may be added to increase the level of exercise of the user.
    Type: Application
    Filed: November 30, 2000
    Publication date: May 30, 2002
    Inventor: Brett C. Walker