Patents by Inventor Brett E. Forejt

Brett E. Forejt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150280621
    Abstract: A method for driving a Linear Resonant Actuator (LRA) is provided. During a first off interval, the back-emf of the LRA is measured. During a first off interval, a timer is started when the back-emf reaches a predetermined threshold, and after a predetermined delay has lapsed following the back-emf reaching the predetermined threshold during the first off interval, the LRA is driven over a drive interval having a length and drive strength. A second off interval is entered following the drive interval, and during the second off interval, the back-emf of the LRA is measured. During the second off interval, the timer is stopped when the back-emf reaches the predetermined threshold. The value from the timer that corresponds to the duration between the back-emf reaching the predetermined threshold during the first off interval and the back-emf reaching the predetermined threshold during the second off interval determines the length.
    Type: Application
    Filed: June 8, 2015
    Publication date: October 1, 2015
    Inventors: Mayank Garg, David Hernandez, Brandon J. Beckham, David J. Baldwin, Brett E. Forejt
  • Patent number: 9054627
    Abstract: A method for driving a Linear Resonant Actuator (LRA) is provided. During a first off interval, the back-emf of the LRA is measured. During a first off interval, a timer is started when the back-emf reaches a predetermined threshold, and after a predetermined delay has lapsed following the back-emf reaching the predetermined threshold during the first off interval, the LRA is driven over a drive interval having a length and drive strength. A second off interval is entered following the drive interval, and during the second off interval, the back-emf of the LRA is measured. During the second off interval, the timer is stopped when the back-emf reaches the predetermined threshold. The value from the timer that corresponds to the duration between the back-emf reaching the predetermined threshold during the first off interval and the back-emf reaching the predetermined threshold during the second off interval determines the length.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: June 9, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mayank Garg, David Hernandez-Garduno, Brandon J. Beckham, David J. Baldwin, Brett E. Forejt
  • Publication number: 20130264973
    Abstract: A method for driving a Linear Resonant Actuator (LRA) is provided. During a first off interval, the back-emf of the LRA is measured. During a first off interval, a timer is started when the back-emf reaches a predetermined threshold, and after a predetermined delay has lapsed following the back-emf reaching the predetermined threshold during the first off interval, the LRA is driven over a drive interval having a length and drive strength. A second off interval is entered following the drive interval, and during the second off interval, the back-emf of the LRA is measured. During the second off interval, the timer is stopped when the back-emf reaches the predetermined threshold. The value from the timer that corresponds to the duration between the back-emf reaching the predetermined threshold during the first off interval and the back-emf reaching the predetermined threshold during the second off interval determines the length.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 10, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Mayank Garg, David Hernandez-Garduno, Brandon J. Beckham, David J. Baldwin, Brett E. Forejt
  • Patent number: 8008969
    Abstract: Traditionally, switching amplifiers (i.e., class-D and class-G) with negative supply rails had issues with direct current (DC) power loss, included large external capacitors, had a comparative reduction in efficiency, and oftentimes included separate power management circuits. Here, a class-D amplifier is provided with an output stage that provides negative supply voltages, positive supply voltages, and ground. Essentially, this amplifier provides some of the benefits of the conventional amplifiers without the drawbacks.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: August 30, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Brett E. Forejt, David J. Baldwin
  • Patent number: 7733179
    Abstract: A differential amplifier (10-1,2) includes an input stage (7) including first (M1) and second (M2) input transistors and first (4A) and second (4B) load devices. Sources of the first and second input transistors are connected together. Drains of the first and second input transistors are coupled by first (12) and second (13) conductors to the first and second load devices, respectively. Common mode feedback circuitry (6A) including first (M3), second (M4), and third (M5) transistors is combined with offset correction circuitry (8) including the second transistor and the third transistor. Sources of the first, second, and third transistors are coupled to a tail current source (11). Drains of the second and third transistors are coupled to the first and second conductors, respectively. A common mode voltage (VOCM) is applied to a gate of the first transistor. Offset trim voltages are applied to gates of the second and third transistors.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: June 8, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Brett E. Forejt
  • Publication number: 20090108936
    Abstract: A differential amplifier (10-1,2) includes an input stage (7) including first (M1) and second (M2) input transistors and first (4A) and second (4B) load devices. Sources of the first and second input transistors are connected together. Drains of the first and second input transistors are coupled by first (12) and second (13) conductors to the first and second load devices, respectively. Common mode feedback circuitry (6A) including first (M3), second (M4), and third (M5) transistors is combined with offset correction circuitry (8) including the second transistor and the third transistor. Sources of the first, second, and third transistors are coupled to a tail current source (11). Drains of the second and third transistors are coupled to the first and second conductors, respectively. A common mode voltage (VOCM) is applied to a gate of the first transistor. Offset trim voltages are applied to gates of the second and third transistors.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 30, 2009
    Inventor: Brett E. Forejt
  • Patent number: 6943717
    Abstract: A sigma delta class D device that uses a low pass filter to smooth the output waveform and eliminate high frequency switching noise from the feedback value includes: a first summing node having a positive input coupled to a signal input node; a second summing node having a first positive input coupled to an output of the first summing node and having an output coupled to a signal output node; a low pass filter having an input coupled to the output of the second summing node; an analog to digital converter having an input coupled to an output of the low pass filter; a third summing node having a positive input node coupled to an output of the analog to digital converter and a negative input node coupled to the output of the first summing node; and a feedback device coupled between an output of the third summing node and a negative input of the first summing node.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: September 13, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Brett E. Forejt
  • Patent number: 6788146
    Abstract: A Miller-compensated amplifier circuit. The circuit includes an amplifier stage, and a compensation capacitor arranged in parallel with the amplifier stage. A current multiplier circuit path, adapted to multiply a current through the compensation capacitor, includes an inversion stage in the current multiplier circuit path. The inversion stage includes a first current mirror adapted to mirror a first current corresponding to a current through the compensation capacitor, to provide a second current, as well as a second current mirror adapted to mirror and invert the second current to provide a third current and to apply the third current to the amplifier stage. In this way, the circuit is Miller compensated by only a single capacitor that has its capacitance multiplied in accordance with current-mode multiplication.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: September 7, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Brett E. Forejt, John M. Muza
  • Publication number: 20040113696
    Abstract: A Miller-compensated amplifier circuit. The circuit includes an amplifier stage, and a compensation capacitor arranged in parallel with the amplifier stage. A current multiplier circuit path, adapted to multiply a current through the compensation capacitor, includes an inversion stage in the current multiplier circuit path. In this way, the circuit is Miller compensated by only a single capacitor that has its capacitance multiplied in accordance with current-mode multiplication.
    Type: Application
    Filed: December 16, 2002
    Publication date: June 17, 2004
    Inventors: Brett E. Forejt, John M. Muza
  • Patent number: 6617921
    Abstract: A circuit and method is provided that provides an amplification stage to a comparator device that matches transistor transconductances to provide adequate amplification and employs diode coupled transistors to control the common mode output bias voltage. The circuit and method provides for a high gain comparator stage with control over output common mode voltage, while providing rail to rail output swing during differential mode without an external feedback to the comparator device.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: September 9, 2003
    Assignee: Texas Instruments Incorporated
    Inventor: Brett E. Forejt
  • Publication number: 20020060607
    Abstract: A circuit and method is provided that provides an amplification stage to a comparator device that matches transistor transconductances to provide adequate amplification and employs diode coupled transistors to control the common mode output bias voltage. The circuit and method provides for a high gain comparator stage with control over output common mode voltage, while providing rail to rail output swing during differential mode without an external feedback to the comparator device.
    Type: Application
    Filed: November 20, 2001
    Publication date: May 23, 2002
    Inventor: Brett E. Forejt