Patents by Inventor Brett Matthew Thompson

Brett Matthew Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10006315
    Abstract: Systems, methods, and tangible non-transitory machine readable medium are provided. A system includes a gas turbine system configured to produce power by combusting a fuel. The system further includes a controller configured to control the gas turbine system via an operating 2-dimensional surface area and a setpoint, wherein the operating 2-dimensional surface area comprises a plurality of limits defining bounds for the operating 2-dimensional surface area, and wherein the setpoint is configured to be disposed inside the operating 2-dimentionsal surface area or on the limits.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: June 26, 2018
    Assignee: General Electric Company
    Inventors: Brett Matthew Thompson, Michael Joseph Alexander, Matthew John Mosley, Steven Di Palma, Paul Jeffrey Mitchell, Justin Aaron Allen, Kihyung Kim
  • Patent number: 9909507
    Abstract: A control system for a combustor system including a plurality of can combustors, each can combustor accommodating combustion of a plurality of combustion fluids in a combustion chamber thereof is provided. The control system may include a calculator calculating: a) a pressure drop for each respective can combustor of the plurality of can combustors between a selected combustion fluid upstream of the combustion chamber and a combustion flow within the combustion chamber of the respective can combustor, and b) a differential between the respective pressure drop for each of the plurality of can combustors and an average pressure drop across all of the plurality of can combustors. The differentials identify can-to-can variation. A controller can modify a combustion parameter of at least one can combustor to reduce the differential for the at least one can combustor. The system can work iteratively to reduce can-to-can variation.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: March 6, 2018
    Assignee: General Electric Company
    Inventors: Scott Andrew Childers, Sanji Ekanayake, Brett Matthew Thompson
  • Patent number: 9523313
    Abstract: A system including a gas turbine system configured to transition between a first load state and a second load state, wherein the gas turbine system comprises an airflow control module configured to adjust an airflow through the gas turbine system between a minimum airflow condition and a maximum airflow condition, and a controller configured to control the gas turbine system to operate with a load path between a first load path corresponding to the minimum airflow condition and a second load path corresponding to the maximum airflow condition, wherein the controller is configured to control the gas turbine system to transition between the first load state and the second load state using the load path between the first and second load paths.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 20, 2016
    Assignee: General Electric Company
    Inventors: Kihyung Kim, Seyfettin Can Gulen, Brett Matthew Thompson
  • Publication number: 20160215703
    Abstract: A control system for a combustor system including a plurality of can combustors, each can combustor accommodating combustion of a plurality of combustion fluids in a combustion chamber thereof is provided. The control system may include a calculator calculating: a) a pressure drop for each respective can combustor of the plurality of can combustors between a selected combustion fluid upstream of the combustion chamber and a combustion flow within the combustion chamber of the respective can combustor, and b) a differential between the respective pressure drop for each of the plurality of can combustors and an average pressure drop across all of the plurality of can combustors. The differentials identify can-to-can variation. A controller can modify a combustion parameter of at least one can combustor to reduce the differential for the at least one can combustor. The system can work iteratively to reduce can-to-can variation.
    Type: Application
    Filed: January 27, 2015
    Publication date: July 28, 2016
    Inventors: Scott Andrew Childers, Sanji Ekanayake, Brett Matthew Thompson
  • Patent number: 9381462
    Abstract: A system for reducing emissions includes a gas production source that produces nitrogen oxides, sulfur oxides, hydrogen sulfide, sulfuric acid, nitric acid, formaldehyde, benzene, metal oxides, or volatile organic compound emissions. An exhaust plenum is downstream from the gas production source, and structure for dispersing a solvent is in the exhaust plenum. A collection tank is in fluid communication with the exhaust plenum to receive the solvent from the exhaust plenum, and a heat source is in the exhaust plenum downstream from the structure for dispersing the solvent. A method for reducing emissions from a gas production source includes flowing exhaust gases through an exhaust plenum, dispersing a solvent through a nozzle in the exhaust plenum, collecting the dispersed solvent in a collection tank, and heating the exhaust gases flowing through the exhaust plenum downstream from the nozzle.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: July 5, 2016
    Assignee: General Electric Company
    Inventors: Robert Thomas Thatcher, Gilbert Otto Kraemer, Andrew Mitchell Rodwell, Brett Matthew Thompson
  • Publication number: 20150275703
    Abstract: Systems, methods, and tangible non-transitory machine readable medium are provided. A system includes a gas turbine system configured to produce power by combusting a fuel. The system further includes a controller configured to control the gas turbine system via an operating 2-dimensional surface area and a setpoint, wherein the operating 2-dimensional surface area comprises a plurality of limits defining bounds for the operating 2-dimensional surface area, and wherein the setpoint is configured to be disposed inside the operating 2-dimentionsal surface area or on the limits.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 1, 2015
    Inventors: Brett Matthew Thompson, Michael Joseph Alexander, John Matthew Mosley, Steven Di Palma, Paul Jeffrey Mitchell, Justin Aaron Allen, Kihyung Kim
  • Publication number: 20150000244
    Abstract: A system for reducing emissions includes a gas production source that produces nitrogen oxides, sulfur oxides, hydrogen sulfide, sulfuric acid, nitric acid, formaldehyde, benzene, metal oxides, or volatile organic compound emissions. An exhaust plenum is downstream from the gas production source, and structure for dispersing a solvent is in the exhaust plenum. A collection tank is in fluid communication with the exhaust plenum to receive the solvent from the exhaust plenum, and a heat source is in the exhaust plenum downstream from the structure for dispersing the solvent. A method for reducing emissions from a gas production source includes flowing exhaust gases through an exhaust plenum, dispersing a solvent through a nozzle in the exhaust plenum, collecting the dispersed solvent in a collection tank, and heating the exhaust gases flowing through the exhaust plenum downstream from the nozzle.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 1, 2015
    Inventors: Robert Thomas Thatcher, Gilbert Otto Kraemer, Andrew Mitchell Rodwell, Brett Matthew Thompson
  • Publication number: 20140260284
    Abstract: A system including a gas turbine system configured to transition between a first load state and a second load state, wherein the gas turbine system comprises an airflow control module configured to adjust an airflow through the gas turbine system between a minimum airflow condition and a maximum airflow condition, and a controller configured to control the gas turbine system to operate with a load path between a first load path corresponding to the minimum airflow condition and a second load path corresponding to the maximum airflow condition, wherein the controller is configured to control the gas turbine system to transition between the first load state and the second load state using the load path between the first and second load paths.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kihyung Kim, Seyfettin Can Gulen, Brett Matthew Thompson
  • Patent number: 8627668
    Abstract: According to various embodiments, a system includes a fuel controller configured to control a fuel transition between a first flow of a first fuel and a second flow of a second fuel into a fuel nozzle of a combustion system. The fuel controller is configured to adjust a third flow of a diluent in combination with the second flow of the second fuel to maintain a pressure ratio across the fuel nozzle above a predetermined operating pressure ratio.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: January 14, 2014
    Assignee: General Electric Company
    Inventor: Brett Matthew Thompson
  • Publication number: 20110289932
    Abstract: According to various embodiments, a system includes a fuel controller configured to control a fuel transition between a first flow of a first fuel and a second flow of a second fuel into a fuel nozzle of a combustion system. The fuel controller is configured to adjust a third flow of a diluent in combination with the second flow of the second fuel to maintain a pressure ratio across the fuel nozzle above a predetermined operating pressure ratio.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 1, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Brett Matthew Thompson