Patents by Inventor Brett Otteson

Brett Otteson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123241
    Abstract: A method for controlling charging a power source of an implantable medical device (IMD) in a patient including determining a power being delivered to a primary coil of an external charging device for recharging, determining an estimated power delivered to the IMD power source an estimated heat generated by the primary coil based on a resistance of the primary coil determined as function of at least one of a recharge frequency, a temperature of the primary coil, and a current supplied to the primary coil, calculating an estimated heat generated by the IMD by subtracting the estimated heat generated by the primary coil and the estimated power delivered stored by the rechargeable power source from the power being delivered to a primary coil; and controlling based on the heat generated by the IMD, the power being delivered by the primary coil of the external charging device.
    Type: Application
    Filed: December 27, 2023
    Publication date: April 18, 2024
    Inventors: Andrew Fried, Brett Otteson, Douglas Brown, Venkat Gaddam
  • Publication number: 20240097499
    Abstract: A system that includes a power transmitting antenna (124) with a coiled conductor defined by a first axis and a second axis perpendicular to the first axis, where a single plane comprises the first axis and the second axis. The system includes a support layer (140, 142) comprising: a substantially planar top surface and a substantially planar bottom surface opposite the substantially planar top surface arranged parallel to the plane. The support layer also comprises a material with a predetermined resiliency. The support layer is configured to support a mass of a user and maintain a predetermined spacing between the plane of the power transmitting antenna and the user during compression of the material from the mass of the user.
    Type: Application
    Filed: February 24, 2022
    Publication date: March 21, 2024
    Inventors: Andrew Thomas Fried, Venkat R. Gaddam, Brett Otteson, Robert J. Monson, Ashutosh Mehra, Jacob P. Komarek, Sandra L. Hawley, Derek J. Olmschenk, Jacob L. Hammond
  • Patent number: 11896838
    Abstract: A method for controlling charging a power source of an implantable medical device (IMD) in a patient including determining a power being delivered to a primary coil of an external charging device for recharging, determining an estimated power delivered to the IMD power source an estimated heat generated by the primary coil based on a resistance of the primary coil determined as function of at least one of a recharge frequency, a temperature of the primary coil, and a current supplied to the primary coil, calculating an estimated heat generated by the IMD by subtracting the estimated heat generated by the primary coil and the estimated power delivered stored by the rechargeable power source from the power being delivered to a primary coil; and controlling based on the heat generated by the IMD, the power being delivered by the primary coil of the external charging device.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: February 13, 2024
    Assignee: Medtronic, Inc.
    Inventors: Andrew Fried, Brett Otteson, Douglas Brown, Venkat Gaddam
  • Patent number: 11888325
    Abstract: An implantable medical system includes an implantable medical device and a external charger. The implantable medical device includes a rechargeable power source, electronic components coupled to the rechargeable power source to deliver a therapy to or monitor a parameter of a patient, and a recharge system operably coupled to the rechargeable power source including a secondary coil to receive power via an inductive power transfer. The external charger includes a housing forming an internal compartment, recharger electronic components disposed on a printed circuit board assembly in the internal compartment, and a recharge coil assembly disposed within the internal compartment, the recharge coil assembly including a recharge coil to provide power to the secondary coil via the inductive power transfer and a flux guide having a ferrite sheet disposed between the recharge coil and the printed circuit board assembly.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: January 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: Robert M. Schulzetenberg, Venkat R. Gaddam, Jason H. Harper, Brett Otteson
  • Publication number: 20230361562
    Abstract: A wireless power transfer system and devices that are configured to perform techniques to detect a single fault in primary processing circuitry by using second, independent processing circuitry. The techniques may include calculating and verifying an integrated output power dose. Verifying the integrated output power dose may include, for example, secondary processing circuitry calculating the integral of power delivered over a predetermined time duration and compares the calculated integral to an expected integral dose curve stored at a memory location accessible by the secondary processing circuitry. The detection techniques may also include determining a maximum output power profile. The secondary processing circuitry may receive a commanded output power target from the primary processing circuitry and compare the commanded output power to the maximum allowed output power vs. time.
    Type: Application
    Filed: April 28, 2023
    Publication date: November 9, 2023
    Inventors: Andrew T. Fried, Charles M. Nowell, JR., Brett A. Otteson, Venkat R. Gaddam, Robert J. Monson
  • Publication number: 20230352988
    Abstract: Devices, systems, and techniques are described to detect when a power transmitting and receiving system is in an inefficient position, which may cause a thermal response that less desirable than a more efficient position. The system may power transmitting device configured to wirelessly transfer electromagnetic energy to a power receiving device. Processing circuitry of the system may compute a target output power deliverable by the power transmitting device for a first duration and control the power transmitting device to output the target output power based in part on a heat limit. The processing circuitry may further calculate an energy transfer efficiency to the power receiving unit, update an adjustment factor based on the calculated energy transfer efficiency, and apply the adjustment factor to the heat limit for a subsequent duration.
    Type: Application
    Filed: June 6, 2023
    Publication date: November 2, 2023
    Inventors: Andrew Thomas Fried, Douglas W. Brown, Charles M. Nowell, Robert J. Monson, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20230352961
    Abstract: Devices and methods described herein facilitate rapid wireless recharging, while reducing risk of injury, damage, or discomfort caused by heat generated during recharging. The embodiments described herein are useful in a variety of context, including for IoT devices, personal electronics, electric vehicles, and medical devices, among others. Such devices can prevent localized overheating of the device.
    Type: Application
    Filed: June 30, 2023
    Publication date: November 2, 2023
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20230321448
    Abstract: The instant application relates to inductive charging of devices subject to migration. Embodiments described herein provide charging to devices at variable depths and locations to accommodate both net displacement of an implantable device as well as angular rotation of the implantable device by selecting appropriate sets or subsets of available field generation coils.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Inventors: Andrew Fried, Venkat Gaddam, Brett Otteson, Mehmet Arcan Erturk
  • Patent number: 11770017
    Abstract: Systems and methods for improved wireless recharging efficiency and decreased processing requirements are described. A plurality of duty cycle/input voltage pairs are stored in a recharger, corresponding to three subsets: a first subset corresponding to a constant minimum input voltage and an increasing duty cycle; a second subset corresponding to a constant duty cycle and an increasing input voltage; and a third subset corresponding to a maximum input voltage and an increasing duty cycle.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: September 26, 2023
    Assignee: Medtronic, Inc.
    Inventors: Brett Otteson, Charles M. Nowell, Jr., Michael J. Hage
  • Patent number: 11752355
    Abstract: Techniques for estimating the temperature of an external portion of a medical device are described. In an example, processing circuitry may determine a temperature sensed by at least one temperature sensor of an internal portion of the device, and determine, based on an algorithm that incorporates the temperature of the internal portion of the device, an estimated temperature of a second portion of the device, wherein the algorithm is representative of an estimated temperature difference between the first portion of the device and the second portion of the device based at least in part on a dynamic transfer function that operates in a time-domain.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: September 12, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Kunal Paralikar, Brett Otteson, Yohan Kim
  • Patent number: 11728670
    Abstract: Devices and methods described herein facilitate rapid wireless recharging, while reducing risk of injury, damage, or discomfort caused by heat generated during recharging. The embodiments described herein are useful in a variety of context, including for IoT devices, personal electronics, electric vehicles, and medical devices, among others. Such devices can prevent localized over-heating of the device.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Brett Otteson
  • Patent number: 11712569
    Abstract: The instant application relates to inductive charging of devices subject to migration. Embodiments described herein provide charging to devices at variable depths and locations to accommodate both net displacement of an implantable device as well as angular rotation of the implantable device by selecting appropriate sets or subsets of available field generation coils.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: August 1, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew Fried, Venkat Gaddam, Brett Otteson, Mehmet Arcan Erturk
  • Patent number: 11705763
    Abstract: Devices, systems, and techniques are described to detect when a power transmitting and receiving system is in an inefficient position, which may cause a thermal response that less desirable than a more efficient position. The system may power transmitting device configured to wirelessly transfer electromagnetic energy to a power receiving device. Processing circuitry of the system may compute a target output power deliverable by the power transmitting device for a first duration and control the power transmitting device to output the target output power based in part on a heat limit. The processing circuitry may further calculate an energy transfer efficiency to the power receiving unit, update an adjustment factor based on the calculated energy transfer efficiency, and apply the adjustment factor to the heat limit for a subsequent duration.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: July 18, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew Thomas Fried, Douglas W. Brown, Charles M. Nowell, Robert J. Monson, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20230020595
    Abstract: Devices and methods described herein facilitate rapid wireless recharging, while reducing risk of injury, damage, or discomfort caused by heat generated during recharging. The embodiments described herein are useful in a variety of context, including for IoT devices, personal electronics, electric vehicles, and medical devices, among others. Such devices can prevent localized over-heating of the device.
    Type: Application
    Filed: May 24, 2021
    Publication date: January 19, 2023
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Brett Otteson
  • Patent number: 11495987
    Abstract: Devices and methods described herein facilitate rapid wireless recharging, while reducing risk of injury, damage, or discomfort caused by heat generated during recharging. The embodiments described herein are useful in a variety of context, including for IoT devices, personal electronics, electric vehicles, and medical devices, among others.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 8, 2022
    Assignee: Medtronic, Inc.
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20220271574
    Abstract: Devices, systems, and techniques are described to detect when a power transmitting and receiving system is in an inefficient position, which may cause a thermal response that less desirable than a more efficient position. The system may power transmitting device configured to wirelessly transfer electromagnetic energy to a power receiving device. Processing circuitry of the system may compute a target output power deliverable by the power transmitting device for a first duration and control the power transmitting device to output the target output power based in part on a heat limit. The processing circuitry may further calculate an energy transfer efficiency to the power receiving unit, update an adjustment factor based on the calculated energy transfer efficiency, and apply the adjustment factor to the heat limit for a subsequent duration.
    Type: Application
    Filed: February 23, 2022
    Publication date: August 25, 2022
    Inventors: Andrew Thomas Fried, Douglas W. Brown, Charles M. Nowell, Robert J. Monson, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20220212017
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device such as an implantable medical device is disclosed. An implantable medical device includes a housing with at least one support disposed within the housing, a temperature sensor thermally coupled to the interior surface of the housing, wherein the temperature sensor is disposed within the housing and configured to sense a temperature of a portion of the housing. At least one physically compliant material is disposed between the at least one support and the temperature sensor, where the physically compliant material is configured to provide a physical bias against the temperature sensor and towards the interior surface of the housing.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 7, 2022
    Inventors: Brett Otteson, Venkat R. Gaddam, Yohan Kim, Boysie R. Morgan
  • Publication number: 20220134116
    Abstract: Techniques for estimating the temperature of an external portion of a medical device are described. In an example, processing circuitry may determine a temperature sensed by at least one temperature sensor of an internal portion of the device, and determine, based on an algorithm that incorporates the temperature of the internal portion of the device, an estimated temperature of a second portion of the device, wherein the algorithm is representative of an estimated temperature difference between the first portion of the device and the second portion of the device based at least in part on a dynamic transfer function that operates in a time-domain.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 5, 2022
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Kunal Paralikar, Brett Otteson, Yohan Kim
  • Publication number: 20210367444
    Abstract: Devices and methods described herein facilitate rapid wireless recharging, while reducing risk of injury, damage, or discomfort caused by heat generated during recharging. The embodiments described herein are useful in a variety of context, including for IoT devices, personal electronics, electric vehicles, and medical devices, among others.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20210194289
    Abstract: An implantable medical system includes an implantable medical device and a external charger. The implantable medical device includes a rechargeable power source, electronic components coupled to the rechargeable power source to deliver a therapy to or monitor a parameter of a patient, and a recharge system operably coupled to the rechargeable power source including a secondary coil to receive power via an inductive power transfer. The external charger includes a housing forming an internal compartment, recharger electronic components disposed on a printed circuit board assembly in the internal compartment, and a recharge coil assembly disposed within the internal compartment, the recharge coil assembly including a recharge coil to provide power to the secondary coil via the inductive power transfer and a flux guide having a ferrite sheet disposed between the recharge coil and the printed circuit board assembly.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 24, 2021
    Applicant: MEDTRONIC, INC.
    Inventors: Robert M. Schulzetenberg, Venkat R. Gaddam, Jason H. Harper, Brett Otteson