Patents by Inventor Brett Pigon

Brett Pigon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200412439
    Abstract: A method includes transmitting a digital code from a transmitter to a receiver. Information is transmitted via electromagnetic waves from the transmitter to the receiver. The transmission of the information includes transmitting a first portion of the information using electromagnetic waves with a first polarization in response to a first value of the digital code, and transmitting a second portion of the information using electromagnetic waves of a second polarization in response to a second value of the digital code. The first information may include a first navigational code and the second information may include a second navigational code.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 31, 2020
    Inventors: Philip KOSSIN, Brett PIGON
  • Patent number: 10868609
    Abstract: A method includes transmitting a digital code from a transmitter to a receiver. Information is transmitted via electromagnetic waves from the transmitter to the receiver. The transmission of the information includes transmitting a first portion of the information using electromagnetic waves with a first polarization in response to a first value of the digital code, and transmitting a second portion of the information using electromagnetic waves of a second polarization in response to a second value of the digital code. The first information may include a first navigational code and the second information may include a second navigational code.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 15, 2020
    Assignee: Eagle Technology, LLC
    Inventors: Philip Kossin, Brett Pigon
  • Patent number: 9013365
    Abstract: Interconnect feed devices (10) are provided for electrically connecting first and second electrical components (17, 21). The interconnect feed devices (10) can include a dielectric shell (23) with an electrically-conductive coating (40), and leads (22) positioned within individual conduits (30) of the shell. Each lead (22) and its associated conduit (30) can act as a coaxial cable for transmitting radio frequency (RF) energy between the first and second electrical components (17, 21). The shell (23) can be manufactured using a process, such as stereolithography, that allows the shell to be formed with relatively complicated geometries, which in turn can facilitate relatively complicated cable routing.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: April 21, 2015
    Assignee: Harris Corporation
    Inventors: Ying-Ming Lee, Brinnan C. Riley, Brett Pigon, William E. Clark, Steven R. Sprinkle
  • Publication number: 20130229323
    Abstract: Interconnect feed devices (10) are provided for electrically connecting first and second electrical components (17, 21). The interconnect feed devices (10) can include a dielectric shell (23) with an electrically-conductive coating (40), and leads (22) positioned within individual conduits (30) of the shell. Each lead (22) and its associated conduit (30) can act as a coaxial cable for transmitting radio frequency (RF) energy between the first and second electrical components (17, 21). The shell (23) can be manufactured using a process, such as stereolithography, that allows the shell to be formed with relatively complicated geometries, which in turn can facilitate relatively complicated cable routing.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: HARRIS CORPORATION
    Inventors: Ying-Ming Lee, Brinnan C. Riley, Brett Pigon, William E. Clark, Steven R. Sprinkle
  • Patent number: 6930568
    Abstract: Method and apparatus for producing a variable delay for an RF signal. The method can include the step of propagating the RF signal along an RF transmission line, coupling a fluidic dielectric to the RF transmission line, and dynamically changing a composition of the fluidic dielectric to selectively vary its permittivity in response to a time delay control signal. The method can also include the step of dynamically changing a composition of the fluidic dielectric to vary its permeability. The permittivity and the permeability can be varied concurrently in response to the time delay control signal. In a preferred embodiment the method can include selectively varying the permeability concurrently with the permittivity to maintain a characteristic impedance of the transmission line approximately constant.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: August 16, 2005
    Assignee: Harris Corporation
    Inventors: Steven Robert Snyder, Stephen B. Brown, Raymond C. Rumpf, Brett Pigon, James J. Rawnick
  • Publication number: 20040095208
    Abstract: Method and apparatus for producing a variable delay for an RF signal. The method can include the step of propagating the RF signal along an RF transmission line, coupling a fluidic dielectric to the RF transmission line, and dynamically changing a composition of the fluidic dielectric to selectively vary its permittivity in response to a time delay control signal. The method can also include the step of dynamically changing a composition of the fluidic dielectric to vary its permeability. The permittivity and the permeability can be varied concurrently in response to the time delay control signal. In a preferred embodiment the method can include selectively varying the permeability concurrently with the permittivity to maintain a characteristic impedance of the transmission line approximately constant.
    Type: Application
    Filed: November 19, 2002
    Publication date: May 20, 2004
    Inventors: Steven Robert Snyder, Stephen B. Brown, Raymond C. Rumpf, Brett Pigon, James J. Rawnick
  • Patent number: 6429816
    Abstract: A multi-beam phased array antenna architecture includes a plurality of antenna modules, stacked together in a side-by-side relationship. Mutually adjacent edges of the modules have antenna elements that form a two-dimensional antenna array as a result of the stacking of the antenna modules. Opposite sides of an antenna module are tray-configured and contain amplifier modules coupled to the antenna elements, and to ‘vertical’ microstrip layers on undersides of double-sided printed wiring boards. Outersides of the double-sided printed wiring boards contain ‘horizontal’ microstrip layers, one for each beam, to which multiple beam-associated phase shift circuit elements for each antenna element on the module are ported. The phase shift circuit elements are also coupled by conductive vias to the first microstrip layers. The second microstrip layers are coupled to connectors along second edges of the modules for engagement with beam signal network modules.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: August 6, 2002
    Assignee: Harris Corporation
    Inventors: Walter M. Whybrew, Brett A. Pigon, Gary Rief, Gregory M. Jandzio, Jay D. Warshowsky
  • Patent number: 6266015
    Abstract: A phased array antenna includes an antenna housing having a subarray assembly that supports beam forming network modules and an array face defining a ground plane substantially orthogonal to the subarray assembly. A plurality of millimeter wavelength patch antenna elements are positioned on the array face and each positioned adjacent a respective subarray assembly. The millimeter wavelength patch antenna elements each include a driven antenna element having a front and rear side and a parasitic antenna element positioned forward of the front side of the driven antenna element. A microstrip quadrature-to-circular polarization circuit is positioned rearward of the rear side of the driven antenna element and operatively connected to the driven antenna element. A single millimeter wavelength feed operatively connects the microstrip quadrature-to-circular polarization circuit with a respective adjacent beam forming network module supported on the orthogonal positioned subarray assembly.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: July 24, 2001
    Assignee: Harris Corporation
    Inventors: Douglas E. Heckaman, Walter M. Whybrew, Brett A. Pigon, Gregory M. Jandzio, Gary A. Rief, James B. Nichols, Randy E. Boozer, Edward J. Bajgrowicz
  • Patent number: 5907304
    Abstract: A modular antenna architecture includes a plurality of joined-together flat, laminate-configured antenna sub-panels, in which RF signal processing (RF amplifier) modules are embedded within a very lightweight, honeycomb-configured support member, upon which respective antenna sub-array and control, power and beam steering signal distribution networks are respectively mounted. The thickness of the honeycomb-configured support member-embedded is sized relative to the lengths of the RF signal processing modules such that input/output ports at opposite ends of the RF modules are substantially coplanar with conductor traces on the front and rear facesheets, so that the RF modules provide the functionality of RF feed-throughs to provide RF signal coupling connections between the rear and front facesheets of the antenna sub-panel.
    Type: Grant
    Filed: January 9, 1997
    Date of Patent: May 25, 1999
    Assignee: Harris Corporation
    Inventors: Steven E. Wilson, James B. Nichols, Gary A. Rief, David M. Holaday, Walter M. Whybrew, Donald J. Beck, Brett A. Pigon, Kelly V. Hillman, Erik Granholm
  • Patent number: 5894983
    Abstract: A thermosonic ribbon bonding process uses a combination of a relatively low temperature and a high frequency to bond a ribbon conductor to conductive bonding sites of a system level support structure, such as a space/airborne antenna, containing circuit components whose characteristics might otherwise be degraded at an elevated temperature customarily used in device-level thermosonic bonding processes. By relatively low temperature is meant a temperature no greater than the minimum temperature that would potentially cause a modification of the circuit parameters of at least one of the system's components. Such a minimum temperature may lie in a range on the order of 25-85.degree. C., while the ultrasonic bonding frequency preferably lies in a range of from 122 KHz to 140 KHz. For gold ribbon to gold pad bonds, this high frequency range achieves the requisite atomic diffusion bonding energy, without causing fracturing or destruction of the gold ribbon or its interface with the gold pad.
    Type: Grant
    Filed: January 9, 1997
    Date of Patent: April 20, 1999
    Assignee: Harris Corporation
    Inventors: Donald J. Beck, Kelly V. Hillman, Hector Deju, Gary A. Rief, Thomas K. Buschor, James B. Nichols, Brett A. Pigon, Walter M. Whybrew, Steven E. Wilson