Patents by Inventor Brett R. Blackman

Brett R. Blackman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7811782
    Abstract: Methods and devices for applying hemodynamic patterns to human/animal cells in culture are described. Hemodynamic flow patterns are measured directly from the human circulation and translated to a motor that controls the rotation of a cone. The cone is submerged in fluid (i.e., cell culture media) and brought into close proximity to the cells. Rotation of the cone creates time-varying shear stresses. This model closely mimics the physiological hemodynamic forces imparted on endothelial cells in vivo. A TRANSWELL coculture dish (i.e., a coculture dish comprising an artificial porous membrane) may be incorporated, permitting two, three, or more different cell types to be physically separated within the culture dish environment. In-flow and out-flow tubing may be used to supply media, drugs, etc. separately and independently to both the inner and outer chambers. The physical separation of the cell types permits each cell type to be separately isolated for analysis.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: October 12, 2010
    Assignee: Hemoshear, LLC
    Inventors: Brett R. Blackman, Brian R. Wamhoff
  • Publication number: 20090053752
    Abstract: An in vitro biomechanical model used to applied hemodynamic (i.e., blood flow) patterns modeled after the human circulation to human/animal cells in culture. This model replicates hemodynamic flow patterns that are measured directly from the human circulation using non-invasive magnetic resonance imaging and translated to the motor that controls the rotation of the cone. The cone is submerged in fluid (i.e., cell culture media) and brought into close proximity to the surface of the cells that are grown on the plate surface. The rotation of the cone transduces momentum on the fluid and creates time-varying shear stresses on the plate or cellular surface. This model most closely mimics the physiological hemodynamic forces imparted on endothelial cells (cell lining blood vessels) in vivo and overcomes previous flow devices limited in applying more simplified nonphysiological flow patterns. Another aspect of this invention is directed to incorporate a transwell co-cultured dish.
    Type: Application
    Filed: January 10, 2008
    Publication date: February 26, 2009
    Inventors: Brett R. Blackman, Brian R. Wamhoff