Patents by Inventor Brett Rochner

Brett Rochner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240025809
    Abstract: An ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 to 300 pounds of force and an insulation R value from 1 to 40, the ultra-stable structural laminate of a cementitious material with a nano-molecular veneer and a foam component catalytically reacted into an expanded closed cell foam having a thickness from ?th inch to 8 inches, a density from 1.5 pounds/cubic foot to 3 pounds/cubic foot that self-adheres to the cementitious material forming an ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 pounds to 300 pounds of force, an insulation R value from 1 to 40, a resistance to seismic impact for earthquakes over 3.1 on the Richter Scale, a break point from 7 lbs/inch to 100 lbs/inch; and a resistance to wind shear equivalent to a 15 mph downburst.
    Type: Application
    Filed: February 10, 2023
    Publication date: January 25, 2024
    Applicant: MITEK HOLDINGS, INC.
    Inventors: James A. Wambaugh, Brett Rochner, Cole J. Weinberger
  • Patent number: 11777440
    Abstract: An ultrastable cementitious material with nano-molecular veneer makes a cementitious material by blending 29 wt % to 40 wt % of a magnesium oxide dry powder containing 80 wt % to 98 wt % of magnesium oxide based on a final total weight of the cementitious material, with 14 wt % to 18 wt % of a magnesium chloride dissolved in water and reacting to form a liquid suspension, mixing from 2 to 10 minutes, adding a phosphorus-containing material, and allowing the liquid suspension to react into an amorphous phase cementitious material, wherein a portion of the amorphous phase cementitious material grows a plurality of crystals. The plurality of crystals are encapsulated by the amorphous phase cementitious material forming a nano-molecular veneer. A process to make the ultrastable cementitious material. A tile backer board incorporating the ultrastable cementitious material and a process for making the tile backer board.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: October 3, 2023
    Assignee: MITEK HOLDINGS, INC.
    Inventors: James A. Wambaugh, Brett Rochner
  • Patent number: 11577999
    Abstract: An ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 to 300 pounds of force and an insulation R value from 1 to 40, the ultra-stable structural laminate of a cementious material with a nano-molecular veneer and a foam component catalytically reacted into an expanded closed cell foam having a thickness from ?th inch to 8 inches, a density from 1.5 pounds/cubic foot to 3 pounds/cubic foot that self-adheres to the cementitious material forming an ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 pounds to 300 pounds of force, an insulation R value from 1 to 40, a resistance to seismic impact for earthquakes over 3.1 on the Richter Scale, a break point from 7 lbs/inch to 100 lbs/inch; and a resistance to wind shear equivalent to a 15 mph downburst.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: February 14, 2023
    Assignee: MITEK HOLDINGS, INC.
    Inventors: James A. Wambaugh, Brett Rochner, Cole J. Weinberger
  • Patent number: 11524922
    Abstract: An ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 to 300 pounds of force and an insulation R value from 1 to 40, the ultra-stable structural laminate of a cementious material with a nano-molecular veneer and a foam component catalytically reacted into an expanded closed cell foam having a thickness from ?th inch to 8 inches, a density from 1.5 pounds/cubic foot to 3 pounds/cubic foot that self-adheres to the cementitious material forming an ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 pounds to 300 pounds of force, an insulation R value from 1 to 40, a resistance to seismic impact for earthquakes over 3.1 on the Richter Scale, a break point from 7 lbs/inch to 100 lbs/inch; and a resistance to wind shear equivalent to a 15 mph downburst.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: December 13, 2022
    Assignee: MITEK HOLDINGS, INC.
    Inventors: James A. Wambaugh, Brett Rochner, Cole J. Weinberger
  • Patent number: 11117836
    Abstract: An ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 to 300 pounds of force and an insulation R value from 1 to 40, the ultra-stable structural laminate of a cementious material with a nano-molecular veneer and a foam component catalytically reacted into an expanded closed cell foam having a thickness from ?th inch to 8 inches, a density from 1.5 pounds/cubic foot to 3 pounds/cubic foot that self-adheres to the cementitious material forming an ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 pounds to 300 pounds of force, an insulation R value from 1 to 40, a resistance to seismic impact for earthquakes over 3.1 on the Richter Scale, a break point from 7 lbs/inch to 100 lbs/inch; and a resistance to wind shear equivalent to a 15 mph downburst.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: September 14, 2021
    Assignee: MiTek Holdings, Inc.
    Inventors: James A. Wambaugh, Brett Rochner, Cole J. Weinberger
  • Publication number: 20210214279
    Abstract: An ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 to 300 pounds of force and an insulation R value from 1 to 40, the ultra-stable structural laminate of a cementious material with a nano-molecular veneer and a foam component catalytically reacted into an expanded closed cell foam having a thickness from ?th inch to 8 inches, a density from 1.5 pounds/cubic foot to 3 pounds/cubic foot that self-adheres to the cementitious material forming an ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 pounds to 300 pounds of force, an insulation R value from 1 to 40, a resistance to seismic impact for earthquakes over 3.1 on the Richter Scale, a break point from 7 lbs/inch to 100 lbs/inch; and a resistance to wind shear equivalent to a 15 mph downburst.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 15, 2021
    Applicant: MITEK HOLDINGS, INC.
    Inventors: James A. Wambaugh, Brett Rochner, Cole J. Weinberger
  • Patent number: 10910988
    Abstract: A method to make an ultra-stable structural laminate of a cementitious material with a nano-molecular veneer and a foam component catalytically reacted into an expanded closed cell foam having a thickness from ?th inch to 8 inches, a density from 1.5 pounds/cubic foot to 3 pounds/cubic foot that inter-engages the cementitious material forming a matrix creating the ultra-stable structural laminate with fire resistance; a lateral nail pull strength from 44 pounds to 300 pounds of force; an insulation R value from 1 to 40; a resistance to seismic impact for earthquakes over 3.1 on the Richter Scale; a break point from 7 lbs/inch to 100 lbs/inch; and a resistance to wind shear equivalent to a 15 mph downburst.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: February 2, 2021
    Assignee: MiTek Holdings, Inc.
    Inventors: James A. Wambaugh, Brett Rochner, Cole J. Weinberger
  • Patent number: 10897222
    Abstract: A building with ultra-stable cementitious material with nano-molecular veneer has 29 wt % to 40 wt % of a magnesium oxide dry powder containing 80 wt % to 98 wt % of magnesium oxide based on a final total weight of the cementitious material, 14 wt % to 18 wt % of a magnesium chloride dissolved in water and reacting to form a liquid suspension, a phosphorus-containing material, and wherein the mixture forms a liquid suspension that reacts into an amorphous phase cementitious material, wherein a portion of the amorphous phase cementitious material grows a plurality of crystals. The plurality of crystals are encapsulated by the amorphous phase cementitious material forming a nano-molecular veneer and a wall material that is affixed to a frame of a building.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: January 19, 2021
    Assignee: MiTek Holdings, Inc.
    Inventors: James A. Wambaugh, Brett Rochner
  • Patent number: 10696595
    Abstract: An ultrastable cementitious material with nano-molecular veneer makes a cementitious material by blending 29 wt % to 40 wt % of a magnesium oxide dry powder containing 80 wt % to 98 wt % of magnesium oxide based on a final total weight of the cementitious material, with 14 wt % to 18 wt % of a magnesium chloride dissolved in water and reacting to form a liquid suspension, mixing from 2 to 10 minutes, adding a phosphorus-containing material, and allowing the liquid suspension to react into an amorphous phase cementitious material, wherein a portion of the amorphous phase cementitious material grows a plurality of crystals. The plurality of crystals are encapsulated by the amorphous phase cementitious material forming a nano-molecular veneer. A process to make the ultrastable cementitious material. A tile backer board incorporating the ultrastable cementitious material and a process for making the tile backer board.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: June 30, 2020
    Assignee: MITEK HOLDINGS, INC.
    Inventors: James A. Wambaugh, Brett Rochner
  • Publication number: 20200181023
    Abstract: An ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 to 300 pounds of force and an insulation R value from 1 to 40, the ultra-stable structural laminate of a cementious material with a nano-molecular veneer and a foam component catalytically reacted into an expanded closed cell foam having a thickness from ?th inch to 8 inches, a density from 1.5 pounds/cubic foot to 3 pounds/cubic foot that self-adheres to the cementitious material forming an ultra-stable structural laminate with fire resistance and a lateral nail pull strength from 44 pounds to 300 pounds of force, an insulation R value from 1 to 40, a resistance to seismic impact for earthquakes over 3.1 on the Richter Scale, a break point from 7 lbs/inch to 100 lbs/inch; and a resistance to wind shear equivalent to a 15 mph downburst.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 11, 2020
    Inventors: James A. Wambaugh, Brett Rochner, Cole J. Weinberger
  • Publication number: 20200067448
    Abstract: An ultrastable cementitious material with nano-molecular veneer makes a cementitious material by blending 29 wt % to 40 wt % of a magnesium oxide dry powder containing 80 wt % to 98 wt % of magnesium oxide based on a final total weight of the cementitious material, with 14 wt % to 18 wt % of a magnesium chloride dissolved in water and reacting to form a liquid suspension, mixing from 2 to 10 minutes, adding a phosphorus-containing material, and allowing the liquid suspension to react into an amorphous phase cementitious material, wherein a portion of the amorphous phase cementitious material grows a plurality of crystals. The plurality of crystals are encapsulated by the amorphous phase cementitious material forming a nano-molecular veneer. A process to make the ultrastable cementitious material. A tile backer board incorporating the ulstrastable cementitious material and a process for making the tile backer board.
    Type: Application
    Filed: October 30, 2019
    Publication date: February 27, 2020
    Applicant: MITEK HOLDINGS, INC.
    Inventors: James A. Wambaugh, Brett Rochner
  • Publication number: 20190379319
    Abstract: A building with ultra-stable cementitious material with nano-molecular veneer has 29 wt % to 40 wt % of a magnesium oxide dry powder containing 80 wt % to 98 wt % of magnesium oxide based on a final total weight of the cementitious material, 14 wt % to 18 wt % of a magnesium chloride dissolved in water and reacting to form a liquid suspension, a phosphorus-containing material, and wherein the mixture forms a liquid suspension that reacts into an amorphous phase cementitious material, wherein a portion of the amorphous phase cementitious material grows a plurality of crystals. The plurality of crystals are encapsulated by the amorphous phase cementitious material forming a nano-molecular veneer and a wall material that is affixed to a frame of a building.
    Type: Application
    Filed: December 5, 2018
    Publication date: December 12, 2019
    Applicant: MITEK HOLDINGS, INC.
    Inventors: James A. Wambaugh, Brett Rochner
  • Publication number: 20190341875
    Abstract: An ultrastable cementitious material with nano-molecular veneer makes a cementitious material by blending 29 wt % to 40 wt % of a magnesium oxide dry powder containing 80 wt % to 98 wt % of magnesium oxide based on a final total weight of the cementitious material, with 14 wt % to 18 wt % of a magnesium chloride dissolved in water and reacting to form a liquid suspension, mixing from 2 to 10 minutes, adding a phosphorus-containing material, and allowing the liquid suspension to react into an amorphous phase cementitious material, wherein a portion of the amorphous phase cementitious material grows a plurality of crystals. The plurality of crystals are encapsulated by the amorphous phase cementitious material forming a nano-molecular veneer. A process to make the ultrastable cementitious material. A tile backer board incorporating the ulstrastable cementitious material and a process for making the tile backer board.
    Type: Application
    Filed: December 28, 2018
    Publication date: November 7, 2019
    Applicant: MITEK HOLDINGS, INC.
    Inventors: James A. Wambaugh, Brett Rochner
  • Publication number: 20190140579
    Abstract: A method to make an ultra-stable structural laminate of a cementitious material with a nano-molecular veneer and a foam component catalytically reacted into an expanded closed cell foam having a thickness from ?th inch to 8 inches, a density from 1.5 pounds/cubic foot to 3 pounds/cubic foot that inter-engages the cementitious material forming a matrix creating the ultra-stable structural laminate with fire resistance; a lateral nail pull strength from 44 pounds to 300 pounds of force; an insulation R value from 1 to 40; a resistance to seismic impact for earthquakes over 3.1 on the Richter Scale; a break point from 7 lbs/inch to 100 lbs/inch; and a resistance to wind shear equivalent to a 15 mph downburst.
    Type: Application
    Filed: December 11, 2018
    Publication date: May 9, 2019
    Inventors: James A. Wambaugh, Brett Rochner
  • Patent number: 10227259
    Abstract: A ultrastable cementitious material with nano-molecular veneer makes a cementitious material by blending 29 wt % to 40 wt % of a magnesium oxide dry powder containing 80 wt % to 98 wt % of magnesium oxide based on a final total weight of the cementitious material, with 14 wt % to 18 wt % of a magnesium chloride dissolved in water and reacting to form a liquid suspension, mixing from 2 to 10 minutes, adding a phosphorus-containing material, and allowing the liquid suspension to react into an amorphous phase cementitious material, wherein a portion of the amorphous phase cementitious material grows a plurality of crystals. The plurality of crystals are encapsulated by the amorphous phase cementitious material forming a nano-molecular veneer.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: March 12, 2019
    Inventors: James Allen Wambaugh, Brett Rochner
  • Patent number: 10167232
    Abstract: A process to make a cementitious material includes blending 29 wt % to 40 wt % of a magnesium oxide dry powder containing 80 wt % to 98 wt % of magnesium oxide based on a final total weight of the cementitious material with 14 wt % to 18 wt % of a magnesium chloride dissolved in water and reacting to form a liquid suspension, mixing from 2 to 10 minutes, adding a phosphorus-containing material, and allowing the liquid suspension to react into an amorphous phase cementitious material. A portion of the amorphous phase cementitious material grows a plurality of crystals. The plurality of crystals is encapsulated by the amorphous phase cementitious material forming a nano-molecular veneer.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: January 1, 2019
    Inventors: James Allen Wambaugh, Brett Rochner
  • Patent number: 10167231
    Abstract: A process to make a tile backer board includes using a stabilizing material with a phosphorus-containing compound, reacting magnesium containing starting materials into an amorphous phase cementitious material, and adding 0.1 wt % to 30 wt % of an aggregate and a reinforcing component by mixing in or pouring over the reinforcing component and allowing the amorphous phase cementitious material to cure into a tile backer board.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: January 1, 2019
    Inventors: James Allen Wambaugh, Brett Rochner
  • Patent number: 10167230
    Abstract: A tile backer board has 29 wt % to 40 wt % of a magnesium oxide dry powder containing 80 wt % to 98 wt % of magnesium oxide, 14 wt % of 18 wt % of a magnesium chloride dissolved in water; 0.1 wt % to 10 wt % of a stabilizing material with a phosphorus-containing compound, reacting into an amorphous phase cementitious material. The phosphorus-containing compound is a phosphorous acid (A) or a phosphoric acid (B). 0.1 wt % to 30 wt % of an aggregate is added and then a reinforcing component is mixed in or the cement is poured onto the reinforcing component forming a tile backer board.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: January 1, 2019
    Inventors: James Allen Wambaugh, Brett Rochner
  • Patent number: 8959861
    Abstract: A water impermeable structure comprising a plurality of construction boards fastened to a structure or a building. Each construction board comprises a curable substrate and a water impermeable seamless resilient membrane adhered to the curable substrate. The water impermeable seamless resilient membrane comprises one or more flaps that extend beyond the curable substrate. The flaps affix to the adjoining construction board creating a water impermeable structure and a water impermeable structure with at least one water impermeable area.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: February 24, 2015
    Assignee: Jet Products, LLC
    Inventors: James Allen Wambaugh, Brett Rochner