Patents by Inventor Brett Rodney Zimmerman

Brett Rodney Zimmerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11548608
    Abstract: A parasite aircraft for airborne deployment and retrieve includes a wing; a fuselage rotatably mounted to the wing; a dock disposed on top of the fuselage and configured to receive a maneuverable capture device of a carrier aircraft; a pair of tail members extending from the fuselage; and a plurality of landing gear mounted to the wing. A method of preparing a parasite aircraft for flight includes unfolding an end portion of a wing; unfolding an end portion of a tail member of the parasite aircraft; and rotating a fuselage of the parasite aircraft so that the fuselage is perpendicular to the wing. A method of preparing a parasite aircraft for storage includes rotating a fuselage of the parasite aircraft to be parallel with a wing of the parasite aircraft; folding an end portion of the wing; and folding an end portion of a tail member of the parasite aircraft.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 10, 2023
    Assignee: Textron Innovations Inc.
    Inventors: Joseph Scott Drennan, Carlos Alexander Fenny, Michael John Ryan, John Richard McCullough, Brett Rodney Zimmerman
  • Patent number: 11104439
    Abstract: A system for deploying and retrieving a parasite aircraft includes a parasite aircraft with a dock and a carrier aircraft that includes a maneuverable capture device tethered to the carrier aircraft via a cable. The maneuverable capture device includes a plurality of rotors and is configured to dock in the dock of the parasite aircraft. A method of deploying a parasite aircraft includes positioning a parasite aircraft on a loading surface; positioning a carrier aircraft above the parasite aircraft; releasing, from the carrier aircraft, a maneuverable capture device comprising a plurality of rotors; securing the maneuverable capture device to a dock positioned on the parasite aircraft; lifting, via a cable secured at a first end to the carrier aircraft and at a second end to the maneuverable capture device, the parasite aircraft with the carrier aircraft; and releasing the parasite aircraft from the maneuverable capture device.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: August 31, 2021
    Assignee: Bell Textron Inc.
    Inventors: Carlos Alexander Fenny, Joseph Scott Drennan, Michael John Ryan, John Richard McCullough, Brett Rodney Zimmerman
  • Publication number: 20210237876
    Abstract: A parasite aircraft for airborne deployment and retrieve includes a wing; a fuselage rotatably mounted to the wing; a dock disposed on top of the fuselage and configured to receive a maneuverable capture device of a carrier aircraft; a pair of tail members extending from the fuselage; and a plurality of landing gear mounted to the wing. A method of preparing a parasite aircraft for flight includes unfolding an end portion of a wing; unfolding an end portion of a tail member of the parasite aircraft; and rotating a fuselage of the parasite aircraft so that the fuselage is perpendicular to the wing. A method of preparing a parasite aircraft for storage includes rotating a fuselage of the parasite aircraft to be parallel with a wing of the parasite aircraft; folding an end portion of the wing; and folding an end portion of a tail member of the parasite aircraft.
    Type: Application
    Filed: April 6, 2021
    Publication date: August 5, 2021
    Applicant: Bell Textron Inc.
    Inventors: Joseph Scott DRENNAN, Carlos Alexander FENNY, Michael John RYAN, John Richard MCCULLOUGH, Brett Rodney ZIMMERMAN
  • Patent number: 11053008
    Abstract: A parasite aircraft for airborne deployment and retrieve includes a wing; a fuselage rotatably mounted to the wing; a dock disposed on top of the fuselage and configured to receive a maneuverable capture device of a carrier aircraft; a pair of tail members extending from the fuselage; and a plurality of landing gear mounted to the wing. A method of preparing a parasite aircraft for flight includes unfolding an end portion of a wing; unfolding an end portion of a tail member of the parasite aircraft; and rotating a fuselage of the parasite aircraft so that the fuselage is perpendicular to the wing. A method of preparing a parasite aircraft for storage includes rotating a fuselage of the parasite aircraft to be parallel with a wing of the parasite aircraft; folding an end portion of the wing; and folding an end portion of a tail member of the parasite aircraft.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: July 6, 2021
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Joseph Scott Drennan, Carlos Alexander Fenny, Michael John Ryan, John Richard Mccullough, Brett Rodney Zimmerman
  • Patent number: 11008102
    Abstract: In an embodiment, a maneuverable capture device includes a frame, a plurality of rotors secured to the frame, an attachment point disposed on the frame for securing a cable of a carrier aircraft to the frame, and an attachment feature configured to secure maneuverable capture device to a dock of a parasite aircraft. In an embodiment, a method of docking a maneuverable capture device with a parasite aircraft includes positioning a carrier aircraft above a parasite aircraft, releasing the maneuverable capture device attached to the carrier aircraft by a cable from the carrier aircraft, flying the maneuverable capture device to a dock of the parasite aircraft, and securing the maneuverable capture device to the dock of the parasite aircraft.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: May 18, 2021
    Assignee: Bell Textron Inc.
    Inventors: Michael John Ryan, Carlos Alexander Fenny, Joseph Scott Drennan, John Richard McCullough, Brett Rodney Zimmerman
  • Patent number: 10994835
    Abstract: An inertia weight assembly positionable within a receiving portion of a rotor blade for use on a rotorcraft. The inertia weight assembly includes a weighted core and a casing having a closed outboard end and forming a cavity. The weighted core is disposed in the cavity such that the casing at least partially encloses the weighted core. The weighted core is formed from a first material and the casing is formed from a second material that is dissimilar to the first material. The casing provides an interface between the weighted core and the receiving portion of the rotor blade. The second material is more bondable to the receiving portion of the rotor blade than the first material.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: May 4, 2021
    Assignee: Textron Innovations Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd, Brett Rodney Zimmerman
  • Patent number: 10814967
    Abstract: A cargo transportation system includes a cargo platform having an upper surface and a perimeter. A propulsion system is disposed about the perimeter of the cargo platform. The propulsion system includes a plurality of propulsion assemblies, each including a propulsion unit disposed within a housing defining an airflow channel having an air inlet for incoming air and an air outlet for outgoing air such that the outgoing air is operable to generate at least vertical lift. A power system disposed within the cargo platform provides energy to drive the propulsion system. A flight control system operably associated with the propulsion system and the power system controls flight operations of the cargo transportation system.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: October 27, 2020
    Assignee: Textron Innovations Inc.
    Inventors: Kirk Landon Groninga, Daniel Bryan Robertson, Brett Rodney Zimmerman
  • Patent number: 10752333
    Abstract: An airframe for a tiltrotor aircraft includes a wing airframe including a rib, a fuselage airframe including a fore-aft overhead beam and a cradle support assembly. The cradle support assembly includes a forward wing support coupled to the fore-aft overhead beam and the wing airframe and an aft wing support coupled to the fore-aft overhead beam and the wing airframe. The rib, the fore-aft overhead beam, the forward wing support and the aft wing support are substantially aligned to form a wing-fuselage integrated airframe beam assembly to support the wing airframe.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: August 25, 2020
    Assignee: Textron Innovations Inc.
    Inventors: John Elton Brunken, Jr., Andrew G. Baines, James Everett Kooiman, John Richard McCullough, Brett Rodney Zimmerman
  • Publication number: 20200115053
    Abstract: A parasite aircraft for airborne deployment and retrieve includes a wing; a fuselage rotatably mounted to the wing; a dock disposed on top of the fuselage and configured to receive a maneuverable capture device of a carrier aircraft; a pair of tail members extending from the fuselage; and a plurality of landing gear mounted to the wing. A method of preparing a parasite aircraft for flight includes unfolding an end portion of a wing; unfolding an end portion of a tail member of the parasite aircraft; and rotating a fuselage of the parasite aircraft so that the fuselage is perpendicular to the wing. A method of preparing a parasite aircraft for storage includes rotating a fuselage of the parasite aircraft to be parallel with a wing of the parasite aircraft; folding an end portion of the wing; and folding an end portion of a tail member of the parasite aircraft.
    Type: Application
    Filed: October 16, 2018
    Publication date: April 16, 2020
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Joseph Scott DRENNAN, Carlos Alexander FENNY, Michael John RYAN, John Richard MCCULLOUGH, Brett Rodney ZIMMERMAN
  • Publication number: 20200115054
    Abstract: An example of a maneuverable capture device includes a frame, a plurality of rotors secured to the frame, an attachment point disposed on the frame for securing a cable of a carrier aircraft to the frame, and an attachment feature configured to secure maneuverable capture device to a dock of a parasite aircraft. An example of a method of docking a maneuverable capture device with a parasite aircraft includes positioning a carrier aircraft above a parasite aircraft, releasing the maneuverable capture device attached to the carrier aircraft by a cable from the carrier aircraft, flying the maneuverable capture device to a dock of the parasite aircraft, and securing the maneuverable capture device to the dock of the parasite aircraft.
    Type: Application
    Filed: October 16, 2018
    Publication date: April 16, 2020
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Michael John RYAN, Carlos Alexander Fenny, Joseph Scott Drennan, John Richard McCullough, Brett Rodney Zimmerman
  • Publication number: 20200115052
    Abstract: A system for deploying and retrieving a parasite aircraft includes a parasite aircraft with a dock and a carrier aircraft that includes a maneuverable capture device tethered to the carrier aircraft via a cable. The maneuverable capture device includes a plurality of rotors and is configured to dock in the dock of the parasite aircraft. A method of deploying a parasite aircraft includes positioning a parasite aircraft on a loading surface; positioning a carrier aircraft above the parasite aircraft; releasing, from the carrier aircraft, a maneuverable capture device comprising a plurality of rotors; securing the maneuverable capture device to a dock positioned on the parasite aircraft; lifting, via a cable secured at a first end to the carrier aircraft and at a second end to the maneuverable capture device, the parasite aircraft with the carrier aircraft; and releasing the parasite aircraft from the maneuverable capture device.
    Type: Application
    Filed: October 16, 2018
    Publication date: April 16, 2020
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Carlos Alexander FENNY, Joseph Scott DRENNAN, Michael John RYAN, John Richard MCCULLOUGH, Brett Rodney ZIMMERMAN
  • Patent number: 10392109
    Abstract: An aircraft system includes a wing member and a plurality of unmanned aircraft systems selectively connectable to the wing member. The wing member has a generally airfoil cross-section, a leading edge and a trailing edge. The unmanned aircraft systems have a connected flight mode while coupled to the wing member and an independent flight mode when detached from the wing member. In the connected flight mode, the unmanned aircraft systems are operable to provide propulsion to the wing member to enable flight. The unmanned aircraft systems are operable to be launched from the wing member to perform aerial missions in the independent flight mode and are operable to be recovered by the wing member and returned to the connected flight mode. Thereafter, in the connected flight mode, the unmanned aircraft systems are operable to be resupplied by the wing member.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: August 27, 2019
    Assignee: Bell Textron Inc.
    Inventors: Joseph Scott Drennan, John William Lloyd, Frank Bradley Stamps, Brett Rodney Zimmerman
  • Patent number: 10336459
    Abstract: An engine mount assembly for coupling an engine to an airframe. The engine mount assembly includes a torsion bar coupled between the engine and the airframe. The torsion bar includes an external spline. The engine mount assembly also includes a bell crank having a clamp forming an internal spline with the internal spline of the bell crank adapted to mate with the external spline of the torsion bar to secure the bell crank to the torsion bar such that the bell crank rotates with the torsion bar responsive to movements of the engine.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: July 2, 2019
    Assignee: Bell Helicopter Textron Inc.
    Inventors: Bruce Bennett Bacon, Brett Rodney Zimmerman, Clegg Benjamin Brian Smith
  • Publication number: 20190100297
    Abstract: An airframe for a tiltrotor aircraft includes a wing airframe including a rib, a fuselage airframe including a fore-aft overhead beam and a cradle support assembly. The cradle support assembly includes a forward wing support coupled to the fore-aft overhead beam and the wing airframe and an aft wing support coupled to the fore-aft overhead beam and the wing airframe. The rib, the fore-aft overhead beam, the forward wing support and the aft wing support are substantially aligned to form a wing-fuselage integrated airframe beam assembly to support the wing airframe.
    Type: Application
    Filed: October 2, 2017
    Publication date: April 4, 2019
    Applicant: Bell Helicopter Textron Inc.
    Inventors: John Elton Brunken, JR., Andrew G. Baines, James Everett Kooiman, John Richard McCullough, Brett Rodney Zimmerman
  • Publication number: 20190092458
    Abstract: An inertia weight assembly positionable within a receiving portion of a rotor blade for use on a rotorcraft. The inertia weight assembly includes a weighted core and a casing having a closed outboard end and forming a cavity. The weighted core is disposed in the cavity such that the casing at least partially encloses the weighted core. The weighted core is formed from a first material and the casing is formed from a second material that is dissimilar to the first material. The casing provides an interface between the weighted core and the receiving portion of the rotor blade. The second material is more bondable to the receiving portion of the rotor blade than the first material.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Applicant: Bell Helicopter Textron Inc.
    Inventors: John Richard McCullough, Paul K. Oldroyd, Brett Rodney Zimmerman
  • Publication number: 20190061925
    Abstract: A cargo transportation system includes a cargo platform having an upper surface and a perimeter. A propulsion system is disposed about the perimeter of the cargo platform. The propulsion system includes a plurality of propulsion assemblies, each including a propulsion unit disposed within a housing defining an airflow channel having an air inlet for incoming air and an air outlet for outgoing air such that the outgoing air is operable to generate at least vertical lift. A power system disposed within the cargo platform provides energy to drive the propulsion system. A flight control system operably associated with the propulsion system and the power system controls flight operations of the cargo transportation system.
    Type: Application
    Filed: August 28, 2017
    Publication date: February 28, 2019
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Kirk Landon Groninga, Daniel Bryan Robertson, Brett Rodney Zimmerman
  • Publication number: 20180118336
    Abstract: An aircraft system includes a wing member and a plurality of unmanned aircraft systems selectively connectable to the wing member. The wing member has a generally airfoil cross-section, a leading edge and a trailing edge. The unmanned aircraft systems have a connected flight mode while coupled to the wing member and an independent flight mode when detached from the wing member. In the connected flight mode, the unmanned aircraft systems are operable to provide propulsion to the wing member to enable flight. The unmanned aircraft systems are operable to be launched from the wing member to perform aerial missions in the independent flight mode and are operable to be recovered by the wing member and returned to the connected flight mode. Thereafter, in the connected flight mode, the unmanned aircraft systems are operable to be resupplied by the wing member.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Joseph Scott Drennan, John William Lloyd, Frank Bradley Stamps, Brett Rodney Zimmerman
  • Publication number: 20170217596
    Abstract: An engine mount assembly for coupling an engine to an airframe. The engine mount assembly includes a torsion bar coupled between the engine and the airframe. The torsion bar includes an external spline. The engine mount assembly also includes a bell crank having a clamp forming an internal spline with the internal spline of the bell crank adapted to mate with the external spline of the torsion bar to secure the bell crank to the torsion bar such that the bell crank rotates with the torsion bar responsive to movements of the engine.
    Type: Application
    Filed: January 19, 2017
    Publication date: August 3, 2017
    Applicant: Bell Helicopter Textron Inc.
    Inventors: Bruce Bennett Bacon, Brett Rodney Zimmerman, Clegg Benjamin Brian Smith