Patents by Inventor Brett Tamatea Henderson

Brett Tamatea Henderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9857325
    Abstract: A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: January 2, 2018
    Assignees: Lawrence Livermore National Security, LLC, EmiSense Technologies, LLC
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Patent number: 9857239
    Abstract: A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: January 2, 2018
    Assignees: Lawrence Livermore National Security, LLC, EmiSense Technologies, LLC
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Patent number: 9857326
    Abstract: A method for analysis of a gas stream. The method includes identifying an affected region of an affected waveform signal corresponding to at least one characteristic of the gas stream. The method also includes calculating a voltage-current time differential between the affected region of the affected waveform signal and a corresponding region of an original waveform signal. The affected region and the corresponding region of the waveform signals have a sensitivity specific to the at least one characteristic of the gas stream. The method also includes generating a value for the at least one characteristic of the gas stream based on the calculated voltage-current time differential.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: January 2, 2018
    Assignees: Lawrence Livermore National Security, LLC, EmiSense Technologies, LLC
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Publication number: 20170234743
    Abstract: A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 17, 2017
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Publication number: 20170234828
    Abstract: A method for analysis of a gas stream. The method includes identifying an affected region of an affected waveform signal corresponding to at least one characteristic of the gas stream. The method also includes calculating a voltage-current time differential between the affected region of the affected waveform signal and a corresponding region of an original waveform signal. The affected region and the corresponding region of the waveform signals have a sensitivity specific to the at least one characteristic of the gas stream. The method also includes generating a value for the at least one characteristic of the gas stream based on the calculated voltage-current time differential.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 17, 2017
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Publication number: 20170234827
    Abstract: A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 17, 2017
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Patent number: 9724897
    Abstract: A method is described. The method is a method for making a constraining ceramic assembly. The method includes applying at least one metallic electrode to a substrate. The method also includes applying a porous ceramic layer to the substrate to cover the metallic electrode. The method also includes sintering the substrate, the porous ceramic layer, and the metallic electrode together at a sintering temperature above a melting point of the metallic electrode.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: August 8, 2017
    Assignee: EmiSense Technologies, LLC
    Inventors: Gangqiang Wang, Joseph Fitzpatrick, James John Steppan, Leta Yar-Li Woo, Brett Tamatea Henderson, Frank Bell
  • Patent number: 9581564
    Abstract: A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: February 28, 2017
    Assignees: EmiSense Technologies, LLC, Lawrence Livermore National Security, LLC
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Publication number: 20160194252
    Abstract: A method is described. The method is a method for making a constraining ceramic assembly. The method includes applying at least one metallic electrode to a substrate. The method also includes applying a porous ceramic layer to the substrate to cover the metallic electrode. The method also includes sintering the substrate, the porous ceramic layer, and the metallic electrode together at a sintering temperature above a melting point of the metallic electrode.
    Type: Application
    Filed: January 7, 2015
    Publication date: July 7, 2016
    Applicant: EMISENSE TECHNOLOGIES, LLC
    Inventors: Gangqiang Wang, Joseph Fitzpatrick, James John Steppan, Leta Yar-Li Woo, Brett Tamatea Henderson, Frank Bell
  • Publication number: 20150101937
    Abstract: A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 16, 2015
    Applicants: Lawrence Livermore National Security, LLC, EmiSense Technologies, LLC
    Inventors: Leta Yar-Li Woo, Robert Scott Glass, Joseph Jay Fitzpatrick, Gangqiang Wang, Brett Tamatea Henderson, Anthoniraj Lourdhusamy, James John Steppan, Klaus Karl Allmendinger
  • Patent number: 8161796
    Abstract: An electrode assembly for a particulate matter sensor in a gas environment. The electrode assembly includes an insulating tube, a conductor, and a positioning structure. The insulating tube has an outer surface and defines an interior cavity with an interior surface. The conductor is disposed within the interior cavity of the insulating tube. The conductor is electrically coupled to an electrode at a first end of the insulating tube and includes a contact portion at a second end of the insulating tube for connection to an external conductor. The positioning structure is coupled to the conductor. The positioning structure mechanically supports the conductor at a distance from the interior surface of the insulating tube to at least partially define an air dielectric gap at approximately a heater location corresponding to a heater.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: April 24, 2012
    Assignee: EmiSense Technologies LLC
    Inventors: Balakrishnan G. Nair, Brett Tamatea Henderson
  • Publication number: 20100264025
    Abstract: An electrode assembly for a particulate matter sensor in a gas environment. The electrode assembly includes an insulating tube, a conductor, and a positioning structure. The insulating tube has an outer surface and defines an interior cavity with an interior surface. The conductor is disposed within the interior cavity of the insulating tube. The conductor is electrically coupled to an electrode at a first end of the insulating tube and includes a contact portion at a second end of the insulating tube for connection to an external conductor. The positioning structure is coupled to the conductor. The positioning structure mechanically supports the conductor at a distance from the interior surface of the insulating tube to at least partially define an air dielectric gap at approximately a heater location corresponding to a heater.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 21, 2010
    Inventors: Balakrishnan G. Nair, Brett Tamatea Henderson
  • Publication number: 20100122916
    Abstract: A sensor for monitoring concentration of a constituent in a gas may include an ionically conductive layer and a sensing electrode coupled to the ionically conductive layer. The sensing electrode may be exposed to a gas. The sensor may also include a reference electrode that is exposed to the gas and made of substantially a same material as the sensing electrode.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 20, 2010
    Inventors: Balakrishnan G. Nair, Brett Tamatea Henderson, Thomas Koerner Pace, Gangqiang Wang
  • Patent number: 7427339
    Abstract: The current invention relates to a means for improving heat removal from the inside of an electrochemical device to the outer surface so as to reduce thermal stresses in the device, thereby allowing for increased oxygen production. A means for conducting heat toward the outer edge is provided. The means for conducting heat comprises at least one of silver, gold, platinum, rhodium, and palladium.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: September 23, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: David Douglas Brengel, Donald Laurence Meixner, Brett Tamatea Henderson
  • Publication number: 20070240987
    Abstract: A sensing apparatus to measure nitric oxide (NO) in exhaled breath is disclosed. An embodiment of the sensing apparatus includes an inlet, a pretreatment element, and a sensing electrode. The inlet is configured to receive the exhaled breath. The pretreatment element is configured to receive the exhaled breath from the inlet and to condition a chemical characteristic of the exhaled breath. The sensing electrode is coupled to a chamber within the sensing apparatus. The chamber is configured to receive the pretreated exhaled breath from the pretreatment element. The sensing electrode is configured to detect a component of nitrogen oxide (NOX) in the exhaled breath.
    Type: Application
    Filed: April 13, 2007
    Publication date: October 18, 2007
    Inventors: Balakrishnan G. Nair, Jesse Alan Nachias, Brett Tamatea Henderson
  • Patent number: 6117288
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: September 12, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Raymond Ashton Cutler, Brett Tamatea Henderson, Jimmy Ludlow, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 6042703
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: March 28, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Raymond Ashton Cutler, Brett Tamatea Henderson, Jimmy Ludlow, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 5868918
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: September 26, 1996
    Date of Patent: February 9, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Brett Tamatea Henderson, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 5750279
    Abstract: An electrochemical device is disclosed comprising a plurality of planar electrolytic cells connected in series, each cell having an oxygen ion-conducting electrolyte layer, an anode layer and a cathode layer associated with the electrolyte layer, electrically conductive interconnect layers having gas passages situated therein for transporting gaseous streams, which interconnect layers electrically connect the anode layer of each electrolytic cell to the cathode layer of an adjacent planar cell, and sealing means positioned between the interconnect layers and the electrolytic cells to provide a gas-tight seal therebetween. The configuration of the interconnect layer and the placement of the seal means provides a separation between the seal and the conductive pathway of electrons between the anode layer and cathode layer which prevents corrosion or deterioration of the seal.
    Type: Grant
    Filed: May 9, 1994
    Date of Patent: May 12, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Paul Nigel Dyer, Eric Minford, Steven Lee Russek, Merrill Anderson Wilson, Dale M. Taylor, Brett Tamatea Henderson