Patents by Inventor Brian A. Donnelly

Brian A. Donnelly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953901
    Abstract: An autonomous vehicle includes one or more sensors for detecting an object in an environment surrounding the autonomous vehicle and a vehicle computing system comprising one or more processors receiving canonical route data associated with at least one canonical route, and controlling travel of the autonomous vehicle based on sensor data from the one or more sensors and the canonical route data associated with the at least one canonical route. The at least one canonical route comprises at least one roadway connected with another roadway in a plurality of roadways in a geographic location that satisfies at least one route optimization function derived based on trip data associated with one or more traversals of the plurality of roadways in a geographic location by one or more autonomous vehicles.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: April 9, 2024
    Assignee: UATC, LLC
    Inventors: Andrew Raymond Sturges, Alexander Edward Chao, Yifang Liu, Xiaodong Zhang, Richard Brian Donnelly, Bryan John Nagy, Jeff Schneider, Collin Christopher Otis
  • Patent number: 11918076
    Abstract: A method for manufacturing an article of footwear includes arranging a three-dimensional upper on a last and placing a plurality of elongated support structures on the three-dimensional upper arranged on the last using an automated placement assembly. The method further includes heating the plurality of elongated support structures to secure the plurality of elongated support structures to the upper.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: March 5, 2024
    Assignee: Reebok International Limited
    Inventors: Erasmo Rodriguez, Brian J. Christensen, Brian Hamilton, Ricardo Vestuti, Brenna Donnelly
  • Publication number: 20240061438
    Abstract: An autonomous robot is provided. In one example embodiment, an autonomous robot can include a main body including one or more compartments. The one or more compartments can be configured to provide support for transporting an item. The autonomous robot can include a mobility assembly affixed to the main body and a sensor configured to obtain sensor data associated with a surrounding environment of the autonomous robot. The autonomous robot can include a computing system configured to plan a motion of the autonomous robot based at least in part on the sensor data. The computing system can be operably connected to the mobility assembly for controlling a motion of the autonomous robot. The autonomous robot can include a coupling assembly configured to temporarily secure the autonomous robot to an autonomous vehicle. The autonomous robot can include a power system and a ventilation system that can interface with the autonomous vehicle.
    Type: Application
    Filed: October 26, 2023
    Publication date: February 22, 2024
    Inventor: Richard Brian Donnelly
  • Patent number: 11841709
    Abstract: An autonomous robot is provided. In one example embodiment, an autonomous robot can include a main body including one or more compartments. The one or more compartments can be configured to provide support for transporting an item. The autonomous robot can include a mobility assembly affixed to the main body and a sensor configured to obtain sensor data associated with a surrounding environment of the autonomous robot. The autonomous robot can include a computing system configured to plan a motion of the autonomous robot based at least in part on the sensor data. The computing system can be operably connected to the mobility assembly for controlling a motion of the autonomous robot. The autonomous robot can include a coupling assembly configured to temporarily secure the autonomous robot to an autonomous vehicle. The autonomous robot can include a power system and a ventilation system that can interface with the autonomous vehicle.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: December 12, 2023
    Assignee: UATC, LLC
    Inventor: Richard Brian Donnelly
  • Patent number: 11835952
    Abstract: Systems and methods for providing an autonomous vehicle service are provided. A method can include obtaining data indicative of a service associated with a user, and obtaining data indicative of a transportation of an autonomous robot. The method can include determining one or more service configurations for the service. The method can include obtaining data indicative of a selected service configuration from among the one or more service configurations, and determining a service assignment for an autonomous vehicle based at least in part on the selected service configuration. The service assignment can indicate that the autonomous vehicle is to transport the user from the service-start location to the service-end location. The method can include communicating data indicative of the service assignment to the autonomous vehicle to perform the service.
    Type: Grant
    Filed: February 10, 2022
    Date of Patent: December 5, 2023
    Assignee: UATC, LLC
    Inventor: Richard Brian Donnelly
  • Patent number: 11820246
    Abstract: Vehicle control systems can include one or more location sensors, an energy storage device, one or more charge sensors and one or more vehicle computing devices. The location sensor(s) can determine a current location of a vehicle, while the charge sensor(s) can determine a current state of charge of an energy storage device that can be located onboard the vehicle to provide operating power for one or more vehicle systems. The vehicle computing device(s) can communicate the current location of the vehicle and current state of charge of the energy storage device to a remote computing device, receive from the remote computing device a charging control signal determined, at least in part, from the current location of the vehicle and the current state of charge of the energy storage device, and control charging of the energy storage device in accordance with the charging control signal.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: November 21, 2023
    Assignee: UATC, LLC
    Inventors: Richard Brian Donnelly, Sean Jeffrey Kelly, Justin Wayne Ho, James Lee Epifano
  • Publication number: 20230358408
    Abstract: Pellet grills and associated methods of operation are disclosed. An example pellet grill includes a lid, a cooking chamber, an engine, and one or more processors. The lid is movable between a closed position and an open position. The engine is configured to output heat to the cooking chamber. The one or more processors are configured to detect a closing movement of the lid. In response to detecting the closing movement, the one or more processors are configured to command the engine to operate in an increased output mode that increases the heat output of the engine.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 9, 2023
    Inventors: Brian Donnelly, Ryan P. Lundberg, David Jonathan Eckhardt
  • Publication number: 20230333555
    Abstract: Systems and methods are directed to matching an available vehicle to a rider requesting a service. In one example, a computer-implemented method includes obtaining, by a computing system comprising one or more computing devices, a service request from a rider. The method further includes obtaining, by the computing system, data indicative of a current location of the rider; and determining that the current location of the rider is within proximity of an autonomous vehicle queuing location. The method further includes providing, by the computing system, data to the rider to provide for selection of an available autonomous vehicle at the autonomous vehicle queuing location. The method further includes obtaining, by the computing system, rider authentication data upon a selection of an autonomous vehicle by the rider; and, in response to obtaining rider authentication data, matching an autonomous vehicle selected by the rider to provide for performance of the service request.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 19, 2023
    Inventors: Molly Castle Nix, Sean Chin, Eric J. Hanson, Richard Brian Donnelly, Dennis Zhao
  • Patent number: 11747808
    Abstract: Systems and methods are directed to matching an available vehicle to a rider requesting a service. In one example, a computer-implemented method includes obtaining, by a computing system comprising one or more computing devices, a service request from a rider. The method further includes obtaining, by the computing system, data indicative of a current location of the rider; and determining that the current location of the rider is within proximity of an autonomous vehicle queuing location. The method further includes providing, by the computing system, data to the rider to provide for selection of an available autonomous vehicle at the autonomous vehicle queuing location. The method further includes obtaining, by the computing system, rider authentication data upon a selection of an autonomous vehicle by the rider; and, in response to obtaining rider authentication data, matching an autonomous vehicle selected by the rider to provide for performance of the service request.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: September 5, 2023
    Assignee: Uber Technologies, Inc.
    Inventors: Molly Castle Nix, Sean Chin, Eric J. Hanson, Richard Brian Donnelly, Dennis Zhao
  • Patent number: 11599123
    Abstract: Systems and methods for determining autonomous vehicle user boarding times are provided. In one example embodiment, a computer implemented method includes obtaining location data associated with a user device associated with a user. The method includes determining an estimated time until the user starts boarding the autonomous vehicle based at least in part on the location data associated with the user device. The method includes obtaining data associated with the user. The method includes determining an estimated time of boarding duration for the user based at least in part on the data associated with the user. The method includes determining an estimated time until the user completes boarding of the autonomous vehicle based at least in part on the estimated time until the user starts boarding the autonomous vehicle and the estimated time of boarding duration for the user.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: March 7, 2023
    Assignee: Uber Technologies, Inc.
    Inventors: Richard Brian Donnelly, Michael Aitken
  • Publication number: 20220366811
    Abstract: A platform for interactive sports and movement training is disclosed. The platform allows a trainer to: upload a step-by-step training video for a challenge via a trainer user interface for access by a plurality of trainees; receive videos of individual trainees performing the steps of the training video; provide feedback to the trainees regarding how they can improve their performance associated with each of the steps of the training video; and indicate when a trainee can access a next step in the step-by-step training, until all movements have been mastered. The platform allows a user to access a first step of a step-by-step training video via a user interface; upload a video of the user performing the first step; receive feedback, via the user interface, from a trainer; and when the feedback indicates that the user is ready, access a next step of the training video.
    Type: Application
    Filed: May 13, 2022
    Publication date: November 17, 2022
    Inventors: Timothy Brian DONNELLY, Shelby Christopher ERICKSON, Jonathan Isaac STRIETZEL, Zach Tyler BATTLEMAN
  • Publication number: 20220269270
    Abstract: Systems and methods for providing an autonomous vehicle service are provided. A method can include obtaining data indicative of a service associated with a user, and obtaining data indicative of a transportation of an autonomous robot. The method can include determining one or more service configurations for the service. The method can include obtaining data indicative of a selected service configuration from among the one or more service configurations, and determining a service assignment for an autonomous vehicle based at least in part on the selected service configuration. The service assignment can indicate that the autonomous vehicle is to transport the user from the service-start location to the service-end location. The method can include communicating data indicative of the service assignment to the autonomous vehicle to perform the service.
    Type: Application
    Filed: February 10, 2022
    Publication date: August 25, 2022
    Inventor: Richard Brian Donnelly
  • Publication number: 20220236738
    Abstract: An autonomous robot is provided. In one example embodiment, an autonomous robot can include a main body including one or more compartments. The one or more compartments can be configured to provide support for transporting an item. The autonomous robot can include a mobility assembly affixed to the main body and a sensor configured to obtain sensor data associated with a surrounding environment of the autonomous robot. The autonomous robot can include a computing system configured to plan a motion of the autonomous robot based at least in part on the sensor data. The computing system can be operably connected to the mobility assembly for controlling a motion of the autonomous robot. The autonomous robot can include a coupling assembly configured to temporarily secure the autonomous robot to an autonomous vehicle. The autonomous robot can include a power system and a ventilation system that can interface with the autonomous vehicle.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventor: Richard Brian Donnelly
  • Patent number: 11385657
    Abstract: Systems and methods for controlling autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining data indicative of a location associated with a user to which an autonomous vehicle is to travel. The autonomous vehicle is to travel along a first vehicle route that leads to the location. The method includes obtaining traffic data associated with a geographic area that includes the location. The method includes determining an estimated traffic impact of the autonomous vehicle on the geographic area based at least in part on the traffic data. The method includes determining vehicle action(s) based at least in part on the estimated traffic impact and causing the autonomous vehicle to perform the vehicle action(s) that include at least one of stopping the autonomous vehicle at least partially in a travel way within a vicinity of the location or travelling along a second vehicle route.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: July 12, 2022
    Assignee: Uber Technologies, Inc.
    Inventors: Richard Brian Donnelly, Michael Aitken
  • Patent number: 11340625
    Abstract: An autonomous robot is provided. In one example embodiment, an autonomous robot can include a main body including one or more compartments. The one or more compartments can be configured to provide support for transporting an item. The autonomous robot can include a mobility assembly affixed to the main body and a sensor configured to obtain sensor data associated with a surrounding environment of the autonomous robot. The autonomous robot can include a computing system configured to plan a motion of the autonomous robot based at least in part on the sensor data. The computing system can be operably connected to the mobility assembly for controlling a motion of the autonomous robot. The autonomous robot can include a coupling assembly configured to temporarily secure the autonomous robot to an autonomous vehicle. The autonomous robot can include a power system and a ventilation system that can interface with the autonomous vehicle.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: May 24, 2022
    Assignee: UATC, LLC
    Inventor: Richard Brian Donnelly
  • Publication number: 20220105819
    Abstract: Vehicle control systems can include one or more location sensors, an energy storage device, one or more charge sensors and one or more vehicle computing devices. The location sensor(s) can determine a current location of a vehicle, while the charge sensor(s) can determine a current state of charge of an energy storage device that can be located onboard the vehicle to provide operating power for one or more vehicle systems. The vehicle computing device(s) can communicate the current location of the vehicle and current state of charge of the energy storage device to a remote computing device, receive from the remote computing device a charging control signal determined, at least in part, from the current location of the vehicle and the current state of charge of the energy storage device, and control charging of the energy storage device in accordance with the charging control signal.
    Type: Application
    Filed: October 18, 2021
    Publication date: April 7, 2022
    Inventors: Richard Brian Donnelly, Sean Jeffrey Kelly, Justin Wayne Ho, James Lee Epifano
  • Patent number: 11281216
    Abstract: Systems and methods for providing an autonomous vehicle service are provided. A method can include obtaining data indicative of a service associated with a user, and obtaining data indicative of a transportation of an autonomous robot. The method can include determining one or more service configurations for the service. The method can include obtaining data indicative of a selected service configuration from among the one or more service configurations, and determining a service assignment for an autonomous vehicle based at least in part on the selected service configuration. The service assignment can indicate that the autonomous vehicle is to transport the user from the service-start location to the service-end location. The method can include communicating data indicative of the service assignment to the autonomous vehicle to perform the service.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: March 22, 2022
    Assignee: UATC, LLC
    Inventor: Richard Brian Donnelly
  • Patent number: 11195353
    Abstract: The present disclosure is directed to communicating autonomous-vehicle status. In particular, the methods, devices, and systems of the present disclosure can: determine one or more maintenance statuses of one or more of multiple different systems of an autonomous vehicle; and depict at least one of the status(es) via a display device affixed to an exterior of the autonomous vehicle and configured to display information associated with the multiple different systems such that the information is visible to an observer located outside the autonomous vehicle.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: December 7, 2021
    Assignee: UATC, LLC
    Inventors: Molly Castle Nix, Sean Chin, Eric James Hanson, Philipp Haban, Richard Brian Donnelly, David Patrick Rice, Thomas Jeffery Watson, Jr.
  • Publication number: 20210365042
    Abstract: Systems and methods for determining autonomous vehicle user boarding times are provided. In one example embodiment, a computer implemented method includes obtaining location data associated with a user device associated with a user. The method includes determining an estimated time until the user starts boarding the autonomous vehicle based at least in part on the location data associated with the user device. The method includes obtaining data associated with the user. The method includes determining an estimated time of boarding duration for the user based at least in part on the data associated with the user. The method includes determining an estimated time until the user completes boarding of the autonomous vehicle based at least in part on the estimated time until the user starts boarding the autonomous vehicle and the estimated time of boarding duration for the user.
    Type: Application
    Filed: June 7, 2021
    Publication date: November 25, 2021
    Inventors: Richard Brian Donnelly, Michael Aitken
  • Patent number: 11148542
    Abstract: Vehicle control systems can include one or more location sensors, an energy storage device, one or more charge sensors and one or more vehicle computing devices. The location sensor(s) can determine a current location of a vehicle, while the charge sensor(s) can determine a current state of charge of an energy storage device that can be located onboard the vehicle to provide operating power for one or more vehicle systems. The vehicle computing device(s) can communicate the current location of the vehicle and current state of charge of the energy storage device to a remote computing device, receive from the remote computing device a charging control signal determined, at least in part, from the current location of the vehicle and the current state of charge of the energy storage device, and control charging of the energy storage device in accordance with the charging control signal.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: October 19, 2021
    Assignee: UATC, LLC
    Inventors: Richard Brian Donnelly, Sean Jeffrey Kelly, Justin Wayne Ho, James Lee Epifano