Patents by Inventor Brian A. Higa

Brian A. Higa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11979168
    Abstract: A method for improving performance of a superconducting, flux-quantizing analog to digital converter (SFADC), comprising the following steps. The first step involves providing a known digitally-modulated signal as an input to the SFADC. Another step provides for generating an output with the SFADC based on the known digitally-modulated signal. Another step provides for comparing the characteristics of the output with ideal characteristics to identify an individual rapid single flux quantum (RSFQ) element of the SFADC that is contributing one or more of noise and error to the output. Another step provides for altering one or more of a bias, a delay, and a temperature of the individual RSFQ element to reduce one or more of the noise and the error.
    Type: Grant
    Filed: August 18, 2022
    Date of Patent: May 7, 2024
    Assignee: United States of America represented by the Secretary of the Navy
    Inventor: Brian A. Higa
  • Publication number: 20240063806
    Abstract: A method for improving performance of a superconducting, flux-quantizing analog to digital converter (SFADC), comprising the following steps. The first step involves providing a known digitally-modulated signal as an input to the SFADC. Another step provides for generating an output with the SFADC based on the known digitally-modulated signal. Another step provides for comparing the characteristics of the output with ideal characteristics to identify an individual rapid single flux quantum (RSFQ) element of the SFADC that is contributing one or more of noise and error to the output. Another step provides for altering one or more of a bias, a delay, and a temperature of the individual RSFQ element to reduce one or more of the noise and the error.
    Type: Application
    Filed: August 18, 2022
    Publication date: February 22, 2024
    Inventor: Brian A. Higa
  • Publication number: 20230142413
    Abstract: A receiver for detecting at least one electromagnetic signal while the receiver is moving relative to the Earth's magnetic field, the receiver comprising: an SQUID array for generating an output that is a transfer function of SQUID array magnetic flux that is supplied from a combination of an oscillating magnetic field of the at least one electromagnetic signal, the Earth's magnetic field, and a bias magnetic field; a bias-tee configured to divide the SQUID array output into a DC signal and an RF signal; a memory store configured to store a plurality of voltage and flux bias values, wherein each voltage value has a corresponding flux bias value that results in maximum SQUID array sensitivity; and a logic circuit configured to find a voltage value in the memory store that most closely matches the DC signal, and to apply to the SQUID array a flux bias corresponding to the most closely matched voltage value.
    Type: Application
    Filed: August 30, 2021
    Publication date: May 11, 2023
    Inventors: Eric C. Fisher, Marcio C. de Andrade, Brian A. Higa, Michael O'Brien
  • Patent number: 11630166
    Abstract: A receiver for detecting at least one electromagnetic signal while the receiver is moving relative to the Earth's magnetic field, the receiver comprising: an SQUID array for generating an output that is a transfer function of SQUID array magnetic flux that is supplied from a combination of an oscillating magnetic field of the at least one electromagnetic signal, the Earth's magnetic field, and a bias magnetic field; a bias-tee configured to divide the SQUID array output into a DC signal and an RF signal; a memory store configured to store a plurality of voltage and flux bias values, wherein each voltage value has a corresponding flux bias value that results in maximum SQUID array sensitivity; and a logic circuit configured to find a voltage value in the memory store that most closely matches the DC signal, and to apply to the SQUID array a flux bias corresponding to the most closely matched voltage value.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 18, 2023
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Eric C. Fisher, Marcio C. de Andrade, Brian A. Higa, Michael O'Brien
  • Patent number: 11373112
    Abstract: A method useful for network and spectrum defense which operates to analyze cyber data and spectra while performing real time optimization which is based on the analyzed cyber data or spectrum. The method utilizes quantum computing and reconfigurable qubits with built-in memory to sample a target cyber data or spectrum, search through the sample and determine a desired or required network or spectrum reallocation, and determine optimal values for its order parameters and Hamiltonian and tune the qubits in accordance with the determination. An embodiment may provide for spectrum optimization that minimizes frequency bandwidth, power, and bit error rate. The desired or required network or spectrum reallocation and optimal values order parameters and Hamiltonian may be stored in the built-in memory to facilitate machine learning.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: June 28, 2022
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Brian A. Higa, Kenneth S. Simonsen, Osama M. Nayfeh
  • Publication number: 20210232961
    Abstract: A method useful for network and spectrum defense which operates to analyze cyber data and spectra while performing real time optimization which is based on the analyzed cyber data or spectrum. The method utilizes quantum computing and reconfigurable qubits with built-in memory to sample a target cyber data or spectrum, search through the sample and determine a desired or required network or spectrum reallocation, and determine optimal values for its order parameters and Hamiltonian and tune the qubits in accordance with the determination. An embodiment may provide for spectrum optimization that minimizes frequency bandwidth, power, and bit error rate. The desired or required network or spectrum reallocation and optimal values order parameters and Hamiltonian may be stored in the built-in memory to facilitate machine learning.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 29, 2021
    Applicant: United States of America as represented by Secretary of the Navy
    Inventors: Brian A. Higa, Kenneth S. Simonsen, Osama M. Nayfeh