Patents by Inventor Brian A Welchko

Brian A Welchko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100071970
    Abstract: An automotive drive system and methods for making the same are provided. The system includes a three-phase motor and an inverter module. The three-phase motor includes a first set of windings each having a first magnetic polarity; and a second set of windings each having a second magnetic polarity that is opposite the first magnetic polarity. The first set of windings being electrically isolated from the second set of windings. The inverter module includes a first set of phase legs and a second set of phase legs. Each one of the first set of phase legs is coupled to a corresponding phase of the first set of windings, and each one of the second set of phase legs is coupled to a corresponding phase of the second set of windings.
    Type: Application
    Filed: May 28, 2009
    Publication date: March 25, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: BRIAN A. WELCHKO, JEREMY B. CAMPBELL
  • Publication number: 20100072928
    Abstract: Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 25, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: BRIAN A. WELCHKO
  • Patent number: 7679310
    Abstract: Methods and systems for controlling a power inverter in an electric drive system of an automobile are provided. The various embodiments control the power inverter by, responsive to either a commanded torque of the electric motor being above a first torque level, or a commanded speed of the electric motor being above a first speed level, controlling the power inverter with a discontinuous pulse width modulated (DPWM) signal to generate a modulated voltage waveform for driving the electric motor. Additionally, the embodiments control the power inverter by, responsive to both a commanded torque of the electric motor being below the first torque level, and a commanded speed of the electric motor being below the first speed level, controlling the power inverter with a continuous pulse width modulated (CPWM) signal to generate the modulated voltage waveform for driving the electric motor.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: March 16, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Steven E. Schulz, Brian A. Welchko, Silva Hiti
  • Patent number: 7659688
    Abstract: Methods and systems are provided for aligning a resolver in an electric motor system. The method includes commanding a d-axis current command and a speed command, operating an electric motor without a load in response to the d-axis current command and the speed command, determining a rotor speed in response to the speed command, and determining an offset of the resolver based on the speed command and the rotor speed when the rotor speed has substantially stabilized.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: February 9, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Steven E. Schulz, Sean E Gleason, Brian A Welchko
  • Patent number: 7652443
    Abstract: Methods and systems for controlling a power inverter in an electric drive system of an automobile are provided. The various embodiments control the power inverter by, responsive to a commanded torque of the electric motor being below a first torque level, controlling the power inverter to set a switching frequency of the power inverter at a first set frequency; and, responsive to the commanded torque of the electric motor being between the first torque level and a second torque level, controlling the power inverter to determine the switching frequency of the power inverter as a function of the commanded torque of the electric motor while maintaining the switching frequency above a dynamic frequency limit. The method reduces switching frequencies in the inverter at high commanded torques, while maintaining the switching frequencies above dynamic frequency limit that provides effective control over the motor.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: January 26, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Steven E. Schulz, Stephen T. West, Brian A. Welchko, Silva Hiti
  • Patent number: 7652858
    Abstract: Methods and apparatus are provided for protecting a motor control circuit in a permanent magnet electric motor system. The permanent magnet electric motor system includes a permanent magnet electric motor having a predetermined number of windings corresponding to the phases of the permanent magnet electric motor and a direct current (DC) bus coupled to a power source for providing operational power for the electric motor system. A motor control circuit is connected to the DC bus for receiving the operational power therefrom and is connected to the windings of the permanent magnet electric motor for controlling the permanent magnet electric motor. A protection circuit is connected to the DC bus for receiving the voltage therefrom for operation of the protection circuit and for detecting predetermined motor control circuit fault conditions from voltage sensed on the DC bus and in response thereto providing protection for the motor control circuit.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: January 26, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: David Tang, Brian A Welchko, Silva Hiti, Mark L Selogie
  • Patent number: 7652447
    Abstract: Power capacitors for AC motors are mounted diametrically on associated transmissions. The power capacitors are in one embodiment annular and in another embodiment, arcuate. By having power capacitors mounted on transmission housings diametrically, cooling of the power capacitors is facilitated for both air and liquid cooling.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: January 26, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Terence G. Ward, Alex Thompson, Brian A Welchko
  • Publication number: 20090319115
    Abstract: Methods and systems are provided for modeling temperature characteristics of components in a system such as a power module for a hybrid or electric vehicle. A power dissipation value is calculated for each of the components in the system. A first filter is applied to the power dissipation value associated with a selected component to determine its estimated temperature. For each of the neighboring components located adjacent to the selected component, a cross-coupling temperature is estimated by applying other filters to each of the power dissipation values for the neighboring components. The estimated temperature of the selected component and the estimated cross-coupling temperatures for each of the neighboring components can then be added to thereby estimate the operating temperature for the selected component. Further, the operation of the system may be adjusted if the operating temperature determined for the selected component exceeds a threshold value.
    Type: Application
    Filed: June 18, 2008
    Publication date: December 24, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Constantin C. STANCU, Robert T. DAWSEY, Brian A. WELCHKO
  • Publication number: 20090285004
    Abstract: Systems and apparatus are provided for an inverter module for use in a vehicle. The inverter module comprises a first electrical base and a second electrical base each having an electrically conductive mounting surface, wherein the electrical bases are physically distinct and electrically coupled. A first semiconductor switch has a surface terminal that is coupled to the electrically conductive mounting surface of the first electrical base. A second semiconductor switch has a surface terminal that is coupled to the electrically conductive mounting surface of the first electrical base. A first semiconductor diode and a second semiconductor diode each have a surface terminal, the surface terminals are coupled to the electrically conductive mounting surface of the second electrical base. The first semiconductor switch and first semiconductor diode are antiparallel, and the second semiconductor switch and second semiconductor diode are antiparallel.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 19, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Brian A. WELCHKO
  • Patent number: 7595600
    Abstract: Methods and systems are provided for controlling permanent magnet machines. The method includes determining a maximum torque of the PM machine based on an error between a commanded d-axis flux and an estimated d-axis flux of the PM machine, and adjusting a torque command based on the maximum torque. The error associated with a variation between a current temperature and a nominal temperature of the PM machine.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: September 29, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Nitinkumar R. Patel, Brian A Welchko, Bonho Bae, Steven E. Schulz
  • Publication number: 20090230913
    Abstract: Methods and apparatus are provided for improved discharge of a DC bus which provides power to an inverter. An electric motor system provided with the improved discharge method for discharge of the DC bus includes an electric motor, the inverter which provides electric control for the permanent magnet electric motor, the direct current (DC) bus which provides power to the inverter, and a processor. The processor generates operational control signals and provides such operational control signals to the inverter. In response to detecting a predetermined discharge signal, the processor generates operational control signals for generating a ripple current in motor windings of the electric motor to dissipate energy from the DC bus through a passive load, the passive load including the motor windings of the electric motor.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 17, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Silva HITI, David TANG, Brian A. WELCHKO, Milun PERISIC, Constantin C. STANCU
  • Publication number: 20090230909
    Abstract: Methods and apparatus are provided for discharging a direct current (DC) bus providing power to a motor control circuit in an electric motor system. The method includes the steps of detecting a predetermined discharge signal and generating operational control signals comprising phase currents for dissipating energy from the DC bus through a passive load in response to detecting the predetermined discharge signal, wherein the passive load includes motor windings of an electric motor of the electric motor system. The method also includes the step of providing the operational control signals to the motor control circuit for discharging the DC bus through the motor control circuit and the motor windings of the electric motor.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 17, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: SILVA HITI, DAVID TANG, BRIAN A. WELCHKO, MILUN PERISIC, CONSTANTIN C. STANCU
  • Patent number: 7579792
    Abstract: An electrical system for a vehicle includes a power source providing electrical power to a first and a second electrical motor. Each motor has two or more windings, and each winding has a first end and a second end. A boost link such as a battery or capacitor is configured to store electrical energy for subsequent retrieval and use by either electrical motor. A first inverter circuit includes a first grouping of switches, wherein each of the first group of switches couples one of the first ends of the windings to the power source. A second inverter circuit includes a second group of switches, each coupling one of the second ends of the windings to the boost link. A controller is coupled to activate each of the first and second groups of switches to thereby allow the electrical energy to be placed on and retrieved from the boost link.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: August 25, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: James M. Nagashima, Brian A Welchko, Peter J. Savagian
  • Publication number: 20090210357
    Abstract: Methods and systems are provided for controlling the charging of onboard energy storage systems of a plurality of plug-in vehicles using a remote command center. A system for directing the charging of a plurality of remotely located plug-in vehicles is provided. The system includes a communication system configured to transmit charging authorizations to charge each of the plurality of plug-in vehicles and to receive data related to power consumption from each of the plurality of plug-in vehicles. The system also includes a controller communicatively coupled to the communication system and configured to receive the data related to power consumption and to direct the charge authorizations based thereon. A database is also included in the system and is communicatively coupled to the controller, with the database configured to store the data related to power consumption.
    Type: Application
    Filed: April 24, 2009
    Publication date: August 20, 2009
    Applicants: GENERAL MOTORS CORPORATION, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: NIKOLA J. PUDAR, GEORGE R. WOODY, BRIAN A. WELCHKO, JONAS BEREISA, JONATHAN J. LAUCKNER, ANTHONY L. POSAWATZ
  • Patent number: 7576500
    Abstract: Methods and systems for operating a motor coupled to an electrical bus in a vehicle are provided. Selected resonant frequencies of the electrical bus are determined. The selected resonant frequencies include a low resonant frequency and a high resonant frequency. Power is provided to the motor through at least one switch operating at a switching frequency. The switching frequency is controlled as a function of a rate of operation of the motor. The function is characterized by one of a first substantially linear portion having a first slope when the switching frequency is less than or equal to a selected switching frequency and a second substantially linear portion having a second slope if the switching frequency is greater than the selected frequency, the selected switching frequency being greater than the low resonant frequency and a substantially linear portion having a y-intercept being greater than the low resonant frequency.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: August 18, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Nitinkumar R. Patel, Mohammad N. Anwar, Silva Hiti, Brian A Welchko, Steven E. Schulz, Lisa M. Talarico
  • Publication number: 20090179608
    Abstract: Methods and systems for controlling a power inverter in an electric drive system of an automobile are provided. A signal controlling the power inverter is modified utilizing a first voltage distortion compensation method if a modulation index of the signal is less than a first modulation index value. The signal is modified utilizing a second voltage distortion compensation method if the modulation index is at least equal to the first modulation index value.
    Type: Application
    Filed: January 11, 2008
    Publication date: July 16, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Brian A. WELCHKO, Steven E. SCHULZ, Silva HITI
  • Patent number: 7556082
    Abstract: An armature for use in an electric traction motor comprises a rotor having a central portion and a peripheral portion with the peripheral portion having a plurality of cavities. Permanent magnets solidified from liquid magnetic material are disposed in the cavities to form poles of the rotor with at least a portion of the cavities having directly abutting permanent magnets comprised of at least first and second magnetic materials of different properties injected in liquid or mobile form into single cavities. In interface regions between the at least first and second magnetic materials the first and second magnetic materials are intermingled to form a transition zone. A method of making the armature includes injecting the magnetic materials simultaneously as well as injecting a subsequent magnetic material when the initial magnetic material is still fluidly mobile.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: July 7, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Brian Welchko, Constantin C. Stancu, Gregory S. Smith
  • Publication number: 20090134833
    Abstract: In various embodiments, a phase current sampling apparatus (300, 600, FIGS. 3, 6), an electric motor drive system (100, FIG. 1), and a motor vehicle (1200, FIG. 12) include switching circuitry adapted to receive first and second phase current waveforms. The switching circuitry provides the first phase current waveform during at least two offset sampling instants, and provides the second phase current waveform during a reference sampling instant. An analog-to-digital converter is adapted to sample the first phase current waveform at the offset sampling instants, and to sample the second phase current waveform at the reference sampling instant. An embodiment of a method for regulating phase current waveforms includes an analog-to-digital converter generating samples of a first phase current waveform at sampling instants that occur before and after a reference sampling instant, and generating a sample of a second phase current waveform at the reference sampling instant.
    Type: Application
    Filed: November 26, 2007
    Publication date: May 28, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: STEPHEN T. WEST, BRIAN A. WELCHKO, STEVEN E. SCHULZ, SILVA HITI
  • Publication number: 20090134835
    Abstract: In various embodiments, an electric motor drive system (400, FIG. 4) and a motor vehicle (1000, FIG. 10) include an inverter (404, FIG. 4) adapted to generate (604, FIG. 6), based on inverter control inputs, a number, N, of phase current waveforms (118, FIG. 1), and a phase current sampling apparatus (408, FIG. 4) having a same number, N, of current sensors (502, 503, 504, FIG. 5). Each of the current sensors is adapted to receive one of the phase current waveforms, and the current sensors are adapted simultaneously to sample the phase current waveforms and to generate digital values representing amplitudes of the phase current waveforms. The system and motor vehicle also include a controller (410, FIG. 4) adapted to receive the digital values, to perform an evaluation of the digital values, and to generate the inverter control inputs (462, FIG. 4) based on the evaluation.
    Type: Application
    Filed: November 26, 2007
    Publication date: May 28, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: BRIAN A. WELCHKO, STEVEN E. SCHULZ, SILVA HITI
  • Publication number: 20090134828
    Abstract: Methods and systems are provided for operating an electric motor having at least one winding coupled to first and second power supplies. A torque command for the electric motor is received. A present power reserve for the first and second power supplies is determined based at least in part on the torque command. An operating voltage for the second power supply is determined based on the present power reserve. The operating voltage for the second power supply is applied to the at least one winding. The application of the operating voltage allowing the present power reserve to flow between the first and second power supplies and the motor.
    Type: Application
    Filed: November 27, 2007
    Publication date: May 28, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: SIBAPRASAD CHAKRABARTI, BRIAN A. WELCHKO, SILVA HITI