Patents by Inventor Brian Adolf
Brian Adolf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220131632Abstract: A multi-channel photonic demultiplexer includes an input region to receive a multi-channel optical signal including four distinct wavelength channels, four output regions, each adapted to receive a corresponding one of the four distinct wavelength channels demultiplexed from the multi-channel optical signal, and a dispersive region optically disposed between the input region and the four output regions. The dispersive region includes a first material and a second material inhomogeneously interspersed to form a plurality of interfaces that each correspond to a change in refractive index of the dispersive region and collectively structure the dispersive region to optically separate each of the four distinct wavelength channels from the multi-channel optical signal and respectively guide each of the four distinct wavelength channels to the corresponding one of the four output regions.Type: ApplicationFiled: January 11, 2022Publication date: April 28, 2022Inventors: Martin Schubert, Brian Adolf, Jesse Lu
-
Patent number: 11295212Abstract: A system for physically simulating a neural network is described herein. The system includes a plurality of physical voxels configurable to represent nodes of the neural network operating in response to electromagnetic radiation. Each of the physical voxels includes an impedance adjuster, a field detector, and a signal adjuster. The impedance adjuster adjusts impedance to the electromagnetic radiation within a corresponding one of the physical voxels. Weights between nodes of the neural network are based on the adjusted impedance. The field detector measures local field response within the corresponding one of the physical voxels. The local field response is representative of the electromagnetic radiation with the adjusted impedance. The signal adjuster is coupled to receive the local field response and apply an adjustment to the received local field response. The adjustment corresponds to an activation function of the neural network at the corresponding one of the physical voxels.Type: GrantFiled: April 23, 2019Date of Patent: April 5, 2022Assignee: X Development LLCInventor: Brian Adolf
-
Publication number: 20220077948Abstract: Embodiments of techniques for inverse design of physical devices are described herein, in the context of generating designs for photonic integrated circuits (including a multi-channel photonic demultiplexer). In some embodiments, an initial design of the physical device is received, and a plurality of sets of operating conditions for fabrication of the physical device are determined. In some embodiments, the performance of the physical device as fabricated under the sets of operating conditions is simulated, and a total performance loss value is backpropagated to determine a gradient to be used to update the initial design. In some embodiments, instead of simulating fabrication of the physical device under the sets of operating conditions, a robustness loss is determined and combined with the performance loss to determine the gradient.Type: ApplicationFiled: November 17, 2021Publication date: March 10, 2022Inventors: Jesse Lu, Brian Adolf, Martin Schubert
-
Patent number: 11271643Abstract: A physical voxel, a volumetric testbed, and method for physically simulating a photonic device are described herein. The volumetric testbed comprises a simulation stage and a controller. The simulation stage includes a three-dimensional array of physical voxels configurable to represent the photonic device operating in response to electromagnetic radiation. The physical voxels include a field detector to measure a local field response and an impedance adjuster to adjust an impedance to the electromagnetic radiation. The controller is coupled to memory, which stores instructions that when executed by one or more processors included in the controller causes the volumetric testbed to perform operations including determining a global field response of the photonic device and adjusting the impedance of the physical voxels to refine a design of the photonic device.Type: GrantFiled: March 23, 2021Date of Patent: March 8, 2022Assignee: X Development LLCInventor: Brian Adolf
-
Patent number: 11258527Abstract: A multi-channel photonic demultiplexer includes an input region to receive a multi-channel optical signal including four distinct wavelength channels, four output regions, each adapted to receive a corresponding one of the four distinct wavelength channels demultiplexed from the multi-channel optical signal, and a dispersive region optically disposed between the input region and the four output regions. The dispersive region includes a first material and a second material inhomogeneously interspersed to form a plurality of interfaces that each correspond to a change in refractive index of the dispersive region and collectively structure the dispersive region to optically separate each of the four distinct wavelength channels from the multi-channel optical signal and respectively guide each of the four distinct wavelength channels to the corresponding one of the four output regions.Type: GrantFiled: October 29, 2020Date of Patent: February 22, 2022Assignee: X Development LLCInventors: Martin Schubert, Brian Adolf, Jesse Lu
-
Publication number: 20220050951Abstract: In some embodiments, logic stored on a computer-readable medium, in response to execution, causes a computing system to conduct an inverse design process to generate a plurality of segmented designs corresponding to a plurality of device specifications, determine at least one highly impactful design area based on the plurality of segmented designs; and designate the at least one highly impactful design area as a static design area. In some embodiments, a product line comprising a plurality of physical devices is provided. Each physical device of the plurality of physical devices includes a design region that includes a static design area and a customized design area. The static design area for each physical device is the same for each physical device of the plurality of physical devices, and the customized design area for each physical device is different for each physical device of the plurality of physical devices.Type: ApplicationFiled: August 14, 2020Publication date: February 17, 2022Inventors: Brian Adolf, Patricia Prewitt
-
Patent number: 11238190Abstract: A method and system for optimizing structural parameters of a physical device is described. The method includes receiving an initial description of the physical device that describes structural parameters of the physical device within a simulated environment. The method further includes performing an operational simulation of the physical device in response to an excitation source, performing an adjoint simulation by backpropagating a placeholder metric through a simulated environment to determine a loss gradient, updating the loss gradient based, at least in part, on a loss metric determined from the operational simulation. Additionally, the method further comprises computing a structural gradient corresponding to an influence of changes in the structural parameters on the loss metric and generating a revised description of the physical device by updating the structural parameters based on the structural gradient to reduce the loss metric.Type: GrantFiled: April 23, 2019Date of Patent: February 1, 2022Assignee: X Development LLCInventors: Jesse Lu, Brian Adolf, Martin Schubert
-
Publication number: 20220026635Abstract: A two-channel photonic demultiplexer includes an input region to receive a multi-channel optical signal, two output regions, each adapted to receive a corresponding one of two distinct wavelength channels demultiplexed from the multi-channel optical signal, and a dispersive region including a first material and a second material inhomogeneously interspersed to form a plurality of interfaces that collectively structure the dispersive region to optically separate each of the two distinct wavelength channels from the multi-channel optical signal and respectively guide the first distinct wavelength channel to a first output region and the second distinct wavelength channel to the second output region when the input region receives the multi-channel optical signal. At least one of the first material or the second material is structured within the dispersive region to be schematically reproducible by a feature shape with a pre-determined width.Type: ApplicationFiled: September 30, 2021Publication date: January 27, 2022Inventors: Martin Schubert, Brian Adolf, Jesse Lu
-
Patent number: 11205022Abstract: A method and system for optimizing structural parameters of an electromagnetic device is described that includes performing operations. The operations include performing a time-forward simulation of a field response in a simulated environment describing the electromagnetic device and extracting decomposition components from the field response to compute a loss value. The operations further include backpropagating the loss value backwards in time using the decomposition components to determine an influence of changes in the structural parameters of the electromagnetic device on the loss value. The operations further include generating a revised description of the electromagnetic device by updating the structural parameters to reduce the loss value.Type: GrantFiled: January 10, 2019Date of Patent: December 21, 2021Assignee: X Development LLCInventors: Jesse Lu, Martin Schubert, Brian Adolf
-
Patent number: 11196503Abstract: Embodiments of techniques for inverse design of physical devices are described herein, in the context of generating designs for photonic integrated circuits (including a multi-channel photonic demultiplexer). In some embodiments, an initial design of the physical device is received, and a plurality of sets of operating conditions for fabrication of the physical device are determined. In some embodiments, the performance of the physical device as fabricated under the sets of operating conditions is simulated, and a total performance loss value is backpropagated to determine a gradient to be used to update the initial design. In some embodiments, instead of simulating fabrication of the physical device under the sets of operating conditions, a robustness loss is determined and combined with the performance loss to determine the gradient.Type: GrantFiled: February 20, 2020Date of Patent: December 7, 2021Assignee: X Development LLCInventors: Jesse Lu, Brian Adolf, Martin Schubert
-
Patent number: 11187854Abstract: A two-channel photonic demultiplexer includes an input region to receive a multi-channel optical signal, two output regions, each adapted to receive a corresponding one of two distinct wavelength channels demultiplexed from the multi-channel optical signal, and a dispersive region including a first material and a second material inhomogeneously interspersed to form a plurality of interfaces that collectively structure the dispersive region to optically separate each of the two distinct wavelength channels from the multi-channel optical signal and respectively guide the first distinct wavelength channel to a first output region and the second distinct wavelength channel to the second output region when the input region receives the multi-channel optical signal. At least one of the first material or the second material is structured within the dispersive region to be schematically reproducible by a feature shape with a pre-determined width.Type: GrantFiled: November 15, 2019Date of Patent: November 30, 2021Assignee: X Development LLCInventors: Martin Schubert, Brian Adolf, Jesse Lu
-
PHYSICAL DEVICE OPTIMIZATION WITH REDUCED MEMORY FOOTPRINT VIA TIME REVERSAL AT ABSORBING BOUNDARIES
Publication number: 20210357554Abstract: A system, apparatus, and method for optimizing structural parameters of a physical device are described. The method includes receiving an initial description of the physical device describing the structural parameters within a simulated environment. The method further includes performing a simulation of the physical device in response to an excitation source to determine a performance metric of the physical device. The simulation environment includes one or more absorbing boundaries for attenuation of an output of the excitation source during the simulation. The method further includes recording attenuated field values of the simulated environment associated with the attenuation during the simulation.Type: ApplicationFiled: July 28, 2021Publication date: November 18, 2021Inventors: Brian Adolf, Martin Schubert, Jesse Lu -
Physical device optimization with reduced memory footprint via time reversal at absorbing boundaries
Patent number: 11106841Abstract: A system, apparatus, and method for optimizing structural parameters of a physical device are described. The method includes receiving an initial description of the physical device describing the structural parameters within a simulated environment. The method further includes performing a simulation of the physical device in response to an excitation source to determine a performance metric of the physical device. The simulation environment includes one or more absorbing boundaries for attenuation of an output of the excitation source during the simulation. The method further includes recording attenuated field values of the simulated environment associated with the attenuation during the simulation.Type: GrantFiled: April 29, 2019Date of Patent: August 31, 2021Assignee: X Development LLCInventors: Brian Adolf, Martin Schubert, Jesse Lu -
Publication number: 20210266088Abstract: Embodiments of techniques for inverse design of physical devices are described herein, in the context of generating designs for photonic integrated circuits (including a multi-channel photonic demultiplexer). In some embodiments, an initial design of the physical device is received, and a plurality of sets of operating conditions for fabrication of the physical device are determined. In some embodiments, the performance of the physical device as fabricated under the sets of operating conditions is simulated, and a total performance loss value is backpropagated to determine a gradient to be used to update the initial design. In some embodiments, instead of simulating fabrication of the physical device under the sets of operating conditions, a robustness loss is determined and combined with the performance loss to determine the gradient.Type: ApplicationFiled: February 20, 2020Publication date: August 26, 2021Inventors: Jesse Lu, Brian Adolf, Martin Schubert
-
Publication number: 20210211195Abstract: A physical voxel, a volumetric testbed, and method for physically simulating a photonic device are described herein. The volumetric testbed comprises a simulation stage and a controller. The simulation stage includes a three-dimensional array of physical voxels configurable to represent the photonic device operating in response to electromagnetic radiation. The physical voxels include a field detector to measure a local field response and an impedance adjuster to adjust an impedance to the electromagnetic radiation. The controller is coupled to memory, which stores instructions that when executed by one or more processors included in the controller causes the volumetric testbed to perform operations including determining a global field response of the photonic device and adjusting the impedance of the physical voxels to refine a design of the photonic device.Type: ApplicationFiled: March 23, 2021Publication date: July 8, 2021Inventor: Brian Adolf
-
Publication number: 20210149109Abstract: A two-channel photonic demultiplexer includes an input region to receive a multi-channel optical signal, two output regions, each adapted to receive a corresponding one of two distinct wavelength channels demultiplexed from the multi-channel optical signal, and a dispersive region including a first material and a second material inhomogeneously interspersed to form a plurality of interfaces that collectively structure the dispersive region to optically separate each of the two distinct wavelength channels from the multi-channel optical signal and respectively guide the first distinct wavelength channel to a first output region and the second distinct wavelength channel to the second output region when the input region receives the multi-channel optical signal. At least one of the first material or the second material is structured within the dispersive region to be schematically reproducible by a feature shape with a pre-determined width.Type: ApplicationFiled: November 15, 2019Publication date: May 20, 2021Inventors: Martin Schubert, Brian Adolf, Jesse Lu
-
Publication number: 20210143930Abstract: A multi-channel photonic demultiplexer includes an input region to receive a multi-channel optical signal including four distinct wavelength channels, four output regions, each adapted to receive a corresponding one of the four distinct wavelength channels demultiplexed from the multi-channel optical signal, and a dispersive region optically disposed between the input region and the four output regions. The dispersive region includes a first material and a second material inhomogeneously interspersed to form a plurality of interfaces that each correspond to a change in refractive index of the dispersive region and collectively structure the dispersive region to optically separate each of the four distinct wavelength channels from the multi-channel optical signal and respectively guide each of the four distinct wavelength channels to the corresponding one of the four output regions.Type: ApplicationFiled: October 29, 2020Publication date: May 13, 2021Inventors: Martin Schubert, Brian Adolf, Jesse Lu
-
Patent number: 11003814Abstract: A technique for optimizing a physical device includes receiving an initial description of the physical device that describes the physical device with voxels that each describes one or more structural parameters of the physical device. The initial description includes a characterization including a desired output signal generated at an output region of the physical device in response to a source signal at a source region of the physical device. A field response is forward simulated from the source region to the output region to generate a forward simulated output signal. Structural parameter weights of the voxels are adjusted with an adaptive algorithm configured to reduce an error between the forward simulated output signal and the desired output signal. The structural parameters of the voxels are revised based upon the adjusting. The forward simulating, adjusting, and revising are iteratively repeated and a revised/optimized description of the physical device is generated.Type: GrantFiled: May 22, 2019Date of Patent: May 11, 2021Assignee: X Development LLCInventor: Brian Adolf
-
Patent number: 10992375Abstract: A physical voxel, a volumetric testbed, and method for physically simulating a photonic device are described herein. The volumetric testbed comprises a simulation stage and a controller. The simulation stage includes a three-dimensional array of physical voxels configurable to represent the photonic device operating in response to electromagnetic radiation. The physical voxels includes a field detector to measure a local field response and an impedance adjuster to adjust an impedance to the electromagnetic radiation. The controller is coupled to memory, which stores instructions that when executed by one or more processors included in the controller causes the volumetric testbed to perform operations including determining a global field response of the photonic device and adjusting the impedance of the physical voxels to refine a design of the photonic device.Type: GrantFiled: January 9, 2020Date of Patent: April 27, 2021Assignee: X Development LLCInventor: Brian Adolf
-
Patent number: 10885262Abstract: In some embodiments, a design verification system is provided that is configured to perform actions for ensuring fabricability of a segmented design. The design verification system searches a proposed segmented design for a paintbrush pattern to determine a positive paintbrush loss, and searches for an inverse paintbrush pattern to determine a negative paintbrush loss. The design verification system combines the positive paintbrush loss and the negative paintbrush loss to obtain a total paintbrush loss that indicates whether or not the proposed segmented design is fabricable. If the total paintbrush loss indicates that the proposed segmented design is not fabricable, the design verification system updates the proposed segmented design based on a gradient of the total paintbrush loss.Type: GrantFiled: February 20, 2020Date of Patent: January 5, 2021Assignee: X Development LLCInventors: Brian Adolf, Jesse Lu, Martin Schubert