Patents by Inventor Brian Adzima

Brian Adzima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10421233
    Abstract: The present disclosure provides a system for printing a three-dimensional object. The system may comprise an open platform configured to hold a film of a viscous liquid comprising a photoactive resin. The open platform may comprise a print window. The system may comprise a deposition head comprising a nozzle in fluid communication with a source of the viscous liquid. The deposition head may be configured to move across the platform and deposit the film over the print window. The system may use multiple viscous liquids. The system may comprise an optical source that provides light through the print window for curing at least a portion of the film of the viscous liquid. The system may comprise a controller operatively coupled to direct movement of the deposition head and projection of the light, thereby printing at least a portion of the 3D object.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: September 24, 2019
    Assignee: HOLO, INC.
    Inventors: Pierre Lin, Jonathan Pomeroy, Arian Aghababaie, Brian Adzima
  • Publication number: 20190176398
    Abstract: The present disclosure provides method and systems for printing a three-dimensional (3D) object. A method for 3D printing may comprise providing a mixture comprising (i) a polymeric precursor, (ii) a photoinitiator configured to initiate formation of a polymeric material from the polymeric precursor, and (iii) a photoinhibitor configured to inhibit the formation of the polymeric precursor. The method may comprise exposing the mixture to (i) a first light to cause the photoinitiator to initiate formation of the polymeric material, thereby to print the 3D object, and (ii) a second light to cause the photoinhibitor to inhibit the formation of the polymeric material. During printing of the 3D object, a ratio of (i) an energy of the second light sufficient to initiate formation of the polymeric material relative to (ii) an energy of the first light sufficient to initiate formation of the polymeric material may be greater than 1.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Inventor: Brian Adzima
  • Patent number: 10245785
    Abstract: The present disclosure provides method and systems for printing a three-dimensional (3D) object. A method for 3D printing may comprise providing a mixture comprising (i) a polymeric precursor, (ii) a photoinitiator configured to initiate formation of a polymeric material from the polymeric precursor, and (iii) a photoinhibitor configured to inhibit the formation of the polymeric precursor. The method may comprise exposing the mixture to (i) a first light to cause the photoinitiator to initiate formation of the polymeric material, thereby to print the 3D object, and (ii) a second light to cause the photoinhibitor to inhibit the formation of the polymeric material. During printing of the 3D object, a ratio of (i) an energy of the second light sufficient to initiate formation of the polymeric material relative to (ii) an energy of the first light sufficient to initiate formation of the polymeric material may be greater than 1.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: April 2, 2019
    Assignee: HOLO, INC.
    Inventor: Brian Adzima
  • Publication number: 20180361666
    Abstract: The present disclosure provides method and systems for printing a three-dimensional (3D) object. A method for 3D printing may comprise providing a mixture comprising (i) a polymeric precursor, (ii) a photoinitiator configured to initiate formation of a polymeric material from the polymeric precursor, and (iii) a photoinhibitor configured to inhibit the formation of the polymeric precursor. The method may comprise exposing the mixture to (i) a first light to cause the photoinitiator to initiate formation of the polymeric material, thereby to print the 3D object, and (ii) a second light to cause the photoinhibitor to inhibit the formation of the polymeric material. During printing of the 3D object, a ratio of (i) an energy of the second light sufficient to initiate formation of the polymeric material relative to (ii) an energy of the first light sufficient to initiate formation of the polymeric material may be greater than 1.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 20, 2018
    Inventor: Brian Adzima
  • Publication number: 20180348646
    Abstract: The present disclosure provides methods, systems, and apparatuses relating to hardware configurations for performing multi-wavelength three dimensional (3D) printing using photoinhibition. In at least one aspect, a system for 3D printing comprises a reservoir capable of holding a liquid including a photoactive resin, a build head that undergoes relative motion within the reservoir during 3D printing of a 3D object on the build head, a light projection device that projects a photoinitiation light beam at a first wavelength into a build area within the liquid, and a plurality of light sources arranged with respect to the light projection device and the reservoir that project a plurality of photoinhibiting light beams into the build area at a second wavelength. Each of the plurality of photoinhibition light beams may be projected at a peak intensity in a different respective position in the build area.
    Type: Application
    Filed: March 12, 2018
    Publication date: December 6, 2018
    Inventors: Pierre Lin, Arian AGHABABAIE, Richard GREENE, Brian ADZIMA, Jonathan POMEROY
  • Publication number: 20180333913
    Abstract: The present disclosure provides a system for printing a three-dimensional object. The system may comprise an open platform configured to hold a film of a viscous liquid comprising a photoactive resin. The open platform may comprise a print window. The system may comprise a deposition head comprising a nozzle in fluid communication with a source of the viscous liquid. The deposition head may be configured to move across the platform and deposit the film over the print window. The system may use multiple viscous liquids. The system may comprise an optical source that provides light through the print window for curing at least a portion of the film of the viscous liquid. The system may comprise a controller operatively coupled to direct movement of the deposition head and projection of the light, thereby printing at least a portion of the 3D object.
    Type: Application
    Filed: June 22, 2018
    Publication date: November 22, 2018
    Inventors: Pierre Lin, Jonathan POMEROY, Arian AGHABABAIE, Brian ADZIMA
  • Publication number: 20180333912
    Abstract: The present disclosure provides a system for printing a three-dimensional object. The system may comprise an open platform configured to hold a film of a viscous liquid comprising a photoactive resin. The open platform may comprise a print window. The system may comprise a deposition head comprising a nozzle in fluid communication with a source of the viscous liquid. The deposition head may be configured to move across the platform and deposit the film over the print window. The system may use multiple viscous liquids. The system may comprise an optical source that provides light through the print window for curing at least a portion of the film of the viscous liquid. The system may comprise a controller operatively coupled to direct movement of the deposition head and projection of the light, thereby printing at least a portion of the 3D object.
    Type: Application
    Filed: June 22, 2018
    Publication date: November 22, 2018
    Inventors: Pierre Lin, Jonathan Pomeroy, Arian Aghababaie, Brian Adzima
  • Publication number: 20180333911
    Abstract: The present disclosure provides a system for printing a three-dimensional object. The system may comprise an open platform configured to hold a film of a viscous liquid comprising a photoactive resin. The open platform may comprise a print window. The system may comprise a deposition head comprising a nozzle in fluid communication with a source of the viscous liquid. The deposition head may be configured to move across the platform and deposit the film over the print window. The system may use multiple viscous liquids. The system may comprise an optical source that provides light through the print window for curing at least a portion of the film of the viscous liquid. The system may comprise a controller operatively coupled to direct movement of the deposition head and projection of the light, thereby printing at least a portion of the 3D object.
    Type: Application
    Filed: June 22, 2018
    Publication date: November 22, 2018
    Inventors: Pierre LIN, Jonathan POMEROY, Arian AGHABABAIE, Brian ADZIMA
  • Patent number: 9969823
    Abstract: Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: May 15, 2018
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: David Luebke, Hunaid Nulwala, Krzysztof Matyjaszewski, Brian Adzima
  • Patent number: 9176380
    Abstract: The present invention includes a composition comprising an alkyne-based substrate, an azide-based substrate, a Cu(II) salt and a photoinducible reducing agent. The present invention further includes a method of immobilizing a chemical structure in a given pattern onto a section of the surface of a solid substrate, using the photoinducible Cu(I)-catalyzed azide-alkyne cycloaddition Click reaction.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: November 3, 2015
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Christopher Bowman, Brian A. Adzima, Christopher J. Kloxin
  • Patent number: 9044902
    Abstract: The invention includes a composite material comprising magnetic field responsive particles distributed in a reversibly crosslinked polymer, wherein the reversibly crosslinked polymer includes thermally reversible bonds. In one embodiment, exposing the composite material to an electromagnetic field allows for crack-healing, remolding and/or bonding of the material.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: June 2, 2015
    Assignee: The Regents of the University of Colorado, a Body Corporate
    Inventors: Christopher Bowman, Brian Adzima, Christopher Kloxin
  • Publication number: 20120160828
    Abstract: The invention includes a composite material comprising magnetic field responsive particles distributed in a reversibly crosslinked polymer, wherein the reversibly crosslinked polymer includes thermally reversible bonds. In one embodiment, exposing the composite material to an electromagnetic field allows for crack-healing, remolding and/or bonding of the material.
    Type: Application
    Filed: November 23, 2011
    Publication date: June 28, 2012
    Inventors: Christopher Bowman, Brian Adzima, Christopher Kloxin