Patents by Inventor Brian B. Simolon

Brian B. Simolon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11894855
    Abstract: Techniques for facilitating analog-to-digital converter calibrations are provided. In one example, a method includes, for each of a plurality of time instances, generating a first ramp signal started at the time instance relative to a respective start of a first counter signal and generating a respective comparator output signal based on the first ramp signal and a first threshold signal. The method further includes capturing a respective first value of the first ramp signal in response to a transition of the respective comparator output signal. The method further includes determining a respective second counter value of a second counter signal based on the respective first value. The method further includes determining a scaling factor based on the second counter values and the time instances. Each of the first values is associated with the same counter value of the first counter signal. Related devices and systems are also provided.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: February 6, 2024
    Assignee: Teledyne FLIR Commercial Systems, Inc.
    Inventor: Brian B. Simolon
  • Publication number: 20230366812
    Abstract: An IR imaging device includes an optical element receiving infrared radiation from a scene, a filter blocking IR radiation outside of a particular range of wavelengths, an array of sensor pixels to capture an image of the scene based on infrared radiation received through the optical element and filter, the array of sensor pixels comprising a first array of sensor pixels to image gas in within a first spectral bandwidth, and a second array of sensor pixel to sense IR radiation in a second spectral bandwidth where gas is not detected, a read-out integrated circuit (ROIC) and logic circuitry to generate a first image sensed by the first array and a second image sensed by the second array, and gas detection logic to detect the presence of gas in the first image.
    Type: Application
    Filed: April 24, 2023
    Publication date: November 16, 2023
    Inventors: Hakan E. Nygren, Jonas Sandsten, Per Lilja, Marta Barenthin-Syberg, Henning Hagman, Eric A. Kurth, Brian B. Simolon, Naseem Y. Aziz, Ulf Wallgren
  • Publication number: 20230160751
    Abstract: Techniques for facilitating vacuum health detection for imaging systems and methods are provided. In one example, an imaging device includes a detector configured to generate a first reference signal. The imaging device further includes a buffer circuit configured to store a value of the first reference signal. The imaging device further includes a processing circuit coupled to the buffer circuit. The processing circuit is configured to determine a first predetermined value based on a first temperature associated with the detector. The processing circuit is further configured to determine vacuum integrity associated with the detector based at least on the value of the first reference signal and the first predetermined value. Related methods and systems are also provided.
    Type: Application
    Filed: January 19, 2023
    Publication date: May 25, 2023
    Inventors: Brian B. Simolon, Naseem Y. Aziz
  • Patent number: 11635370
    Abstract: An IR imaging device includes an optical element receiving infrared radiation from a scene, a filter blocking IR radiation outside of a particular range of wavelengths, an array of sensor pixels to capture an image of the scene based on infrared radiation received through the optical element and filter, the array of sensor pixels comprising a first array of sensor pixels to image gas in within a first spectral bandwidth, and a second array of sensor pixel to sense IR radiation in a second spectral bandwidth where gas is not detected, a read-out integrated circuit (ROIC) and logic circuitry to generate a first image sensed by the first array and a second image sensed by the second array, and gas detection logic to detect the presence of gas in the first image.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 25, 2023
    Assignee: FLIR Systems AB
    Inventors: Hakan E. Nygren, Jonas Sandsten, Per Lilja, Marta Barenthin-Syberg, Henning Hagman, Eric A. Kurth, Brian B. Simolon, Naseem Y. Aziz, Ulf Wallgren
  • Publication number: 20230116433
    Abstract: Techniques for facilitating analog-to-digital converter calibrations are provided. In one example, a method includes, for each of a plurality of time instances, generating a first ramp signal started at the time instance relative to a respective start of a first counter signal and generating a respective comparator output signal based on the first ramp signal and a first threshold signal. The method further includes capturing a respective first value of the first ramp signal in response to a transition of the respective comparator output signal. The method further includes determining a respective second counter value of a second counter signal based on the respective first value. The method further includes determining a scaling factor based on the second counter values and the time instances. Each of the first values is associated with the same counter value of the first counter signal. Related devices and systems are also provided.
    Type: Application
    Filed: October 11, 2021
    Publication date: April 13, 2023
    Inventor: Brian B. Simolon
  • Publication number: 20230031084
    Abstract: Techniques to test infrared detectors are disclosed. In one example, a focal plane array for an imaging system includes a plurality of infrared detectors arranged in a plurality of rows and columns where each of the infrared detectors is configured to provide an output signal in response to externally received thermal radiation associated with a scene. A plurality of offset circuits of the imaging system may be electrically coupled to the focal plane array and configured to selectively superimpose fixed-pattern noise on the output signals to provide modified output signals. A readout integrated circuit of the imaging system may be configured to provide the modified output signals for processing to test an integrity of the infrared detectors. Modified output signals that are outside an expected output range based on the thermal radiation and known offset may be determined defective. Related methods, devices, and systems are also provided.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 2, 2023
    Inventors: Sean Tauber, Brian B. Simolon, Naseem Y. Aziz, Nile E. Fairfield
  • Patent number: 11212466
    Abstract: Techniques are disclosed for facilitating multiple microbolometer selection for simultaneous readout. In one example, a device includes a plurality of microbolometers. The plurality of microbolometers includes a first set and a second set of serially-connected microbolometers. The device further includes a first plurality of switches configured to selectively short the plurality of microbolometers. The device further includes a second plurality of switches configured to selectively couple the plurality of microbolometers to ground. The device further includes a third plurality of switches configured to selectively provide a bias signal to the plurality of microbolometers. The device further includes a processing circuit configured to configure the first plurality, second plurality, and third plurality of switches to cause simultaneous read out of one microbolometer of the first set and one microbolometer of the second set. Related methods and systems are also provided.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: December 28, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Brian B. Simolon, Naseem Y. Aziz
  • Patent number: 11108967
    Abstract: Techniques are disclosed for systems and methods for facilitating infrared imaging in multiple imaging modes. A device may include an infrared image capture circuit and at least one processing circuit. The infrared image capture circuit may be configured to detect first infrared data and generate a first pixel value based on the first infrared data and a first imaging mode among multiple imaging modes. The at least one processing circuit may be configured to compare the first pixel value to a set of saturation threshold values associated with the first imaging mode. The at least one processing circuit may be further configured to select an imaging mode among the multiple imaging modes based on the comparison of the first pixel value. The at least one processing circuit may be further configured to set the infrared image capture circuit to generate a second pixel value based on the selected imaging mode.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: August 31, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Joseph Kostrzewa, Naseem Y. Aziz, John D. Schlesselmann, Brian B. Simolon, Theodore B. Hoelter
  • Patent number: 11092625
    Abstract: Techniques are provided to facilitate current sensing recovery for imaging systems and methods. In one example, a device includes a detector configured to detect electromagnetic radiation and generate a detection signal based on the detected electromagnetic radiation. The device further includes a current sensing circuit configured to provide, based on the detection signal, a first signal. The device further includes a signal generator configured to provide a second signal to adjust a bandwidth associated with the current sensing circuit. The device further includes an imaging integration circuit configured to generate an image of at least a portion of a scene based at least in part on the first signal. Related methods and systems are also provided.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: August 17, 2021
    Assignee: FLIR COMMERCIAL SYSTEMS, INC.
    Inventors: John D. Schlesselmann, Brian B. Simolon
  • Patent number: 11044422
    Abstract: Techniques are disclosed for systems and methods for facilitating pixel readout with partitioned analog-to-digital conversion. A device includes a detector, a capacitor coupled to the detector, a counter circuit coupled to the capacitor, a reset circuit coupled to the capacitor, and a processing circuit. The detector is configured to detect electromagnetic radiation associated with a scene and generate an associated detection signal. The capacitor is configured to, during an integration period, accumulate a voltage based on the detection signal. The counter circuit is configured to, during the integration period, adjust a counter value based on a comparison of the voltage and a reference voltage. The reset circuit is configured to, during the integration period, reset the capacitor based on the comparison. The processing circuit is configured to generate a digital detector output based on the counter value when the integration period has elapsed. Related methods are also provided.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: June 22, 2021
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Brian B. Simolon, Robert F. Cannata, John D. Schlesselmann, Mark T. Nussmeier, Eric A. Kurth
  • Patent number: 11032507
    Abstract: Techniques to set a frame rate and associated device manufacturing are disclosed. In one example, an imaging device includes a detector array configured to detect electromagnetic radiation associated with a scene and provide image data frames according to a first frame rate. The imaging device further includes a readout circuit configured to provide the image data frames according to a frame rate for the readout circuit. The imaging device further includes a fuse configured to set the frame rate for the readout circuit. Related methods and systems are also provided.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: June 8, 2021
    Assignee: FLIR Commercial Systems, Inc.
    Inventors: Robert F. Cannata, Brian B. Simolon, Nicholas Högasten, Christopher Chan, Eric A. Kurth
  • Patent number: 11015979
    Abstract: A bolometer circuit may include an active bolometer configured to receive external infrared (IR) radiation. The bolometer circuit may be configured to reduce power consumption at high temperatures. In particular, the bolometer circuit may include additional resistors provided in the resistive loads for bolometer conduction paths to limit power at high temperatures. In some embodiments, the bias (e.g., a voltage level) to the gates of transistors in the resistive loads for the bolometer conduction paths may be adjusted based on temperature to limit power and/or current at high temperatures. In bolometer circuits with a feedback resistor provided across an amplifier to configure a feedback amplifier, a circuit with adjustable amplifier power may be provided to save power. In some embodiments, a bolometer circuits may be provided with reduced gains to allow for very hot scenes to be imaged without railing the output.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 25, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Naseem Y. Aziz, Brian B. Simolon
  • Patent number: 11012647
    Abstract: A bolometer circuit includes a substrate on which a focal plane array (FPA) of active bolometers is provided. Each active bolometer is configured to receive external infrared (IR) radiation and substantially thermally isolated from the substrate. The bolometer circuit also includes one or more blind arrays of blind bolometers shielded from the external IR radiation and substantially thermally isolated from the substrate. Noises in outputs from each column and/or each row of the FPA are corrected, reduced, or suppressed based on a statistical property of outputs from a corresponding column or row of the one or more blind arrays. Noise in each frame of IR image captured by the FPA may also be corrected, reduced, or suppressed using the one or more blind arrays.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: May 18, 2021
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Robert F. Cannata, Brian B. Simolon, Naseem Y. Aziz
  • Patent number: 10962420
    Abstract: Techniques are disclosed for facilitating pulse detection and imaging. In one example, a device includes a detector configured to detect electromagnetic radiation and generate a detection signal based on the detected electromagnetic radiation. The device further includes an input circuit configured to provide, based on the detection signal, a first signal and a second signal. The device further includes an imaging integration circuit configured to generate an image of at least a portion of a scene based at least in part on the first signal. The device further includes a pulse detection circuit configured to perform pulse detection to generate an indication of whether a pulse is detected in the portion of the scene based at least in part on the second signal. Related methods and systems are also provided.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: March 30, 2021
    Assignee: FLIR Systems, Inc.
    Inventor: Brian B. Simolon
  • Patent number: 10931874
    Abstract: Techniques are disclosed for facilitating burst mode calibration sensing and image mode sensing. In one example, a device includes a detector array configured to detect electromagnetic radiation and provide image data frames according to a first frame rate. The device further includes a logic circuit configured to determine whether a threshold delay has elapsed. The device further includes a frame output circuit configured to: provide, based at least on the threshold delay having elapsed, the image data frames according to the first frame rate; and provide, based at least on the threshold delay not having elapsed, the image data frames according to a second frame rate lower than the first frame rate. Related methods and systems are also provided.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: February 23, 2021
    Assignee: FLIR COMMERCIAL SYSTEMS, INC.
    Inventors: Nicholas Högasten, Brian B. Simolon, Christopher Chan, Robert F. Cannata, Eric A. Kurth
  • Publication number: 20200322548
    Abstract: Techniques are disclosed for facilitating multiple microbolometer selection for simultaneous readout. In one example, a device includes a plurality of microbolometers. The plurality of microbolometers includes a first set and a second set of serially-connected microbolometers. The device further includes a first plurality of switches configured to selectively short the plurality of microbolometers. The device further includes a second plurality of switches configured to selectively couple the plurality of microbolometers to ground. The device further includes a third plurality of switches configured to selectively provide a bias signal to the plurality of microbolometers. The device further includes a processing circuit configured to configure the first plurality, second plurality, and third plurality of switches to cause simultaneous read out of one microbolometer of the first set and one microbolometer of the second set. Related methods and systems are also provided.
    Type: Application
    Filed: June 23, 2020
    Publication date: October 8, 2020
    Inventors: Brian B. Simolon, Naseem Y. Aziz
  • Publication number: 20200186712
    Abstract: Techniques are disclosed for facilitating burst mode calibration sensing and image mode sensing. In one example, a device includes a detector array configured to detect electromagnetic radiation and provide image data frames according to a first frame rate. The device further includes a logic circuit configured to determine whether a threshold delay has elapsed. The device further includes a frame output circuit configured to: provide, based at least on the threshold delay having elapsed, the image data frames according to the first frame rate; and provide, based at least on the threshold delay not having elapsed, the image data frames according to a second frame rate lower than the first frame rate. Related methods and systems are also provided.
    Type: Application
    Filed: November 18, 2019
    Publication date: June 11, 2020
    Inventors: Nicholas Högasten, Brian B. Simolon, Christopher Chan, Robert F. Cannata, Eric A. Kurth
  • Publication number: 20200186736
    Abstract: Techniques to set a frame rate and associated device manufacturing are disclosed. In one example, an imaging device includes a detector array configured to detect electromagnetic radiation associated with a scene and provide image data frames according to a first frame rate. The imaging device further includes a readout circuit configured to provide the image data frames according to a frame rate for the readout circuit. The imaging device further includes a fuse configured to set the frame rate for the readout circuit. Related methods and systems are also provided.
    Type: Application
    Filed: November 20, 2019
    Publication date: June 11, 2020
    Inventors: Robert F. Cannata, Brian B. Simolon, Nicholas Högasten, Christopher Chan, Eric A. Kurth
  • Publication number: 20200150160
    Abstract: Techniques are provided to facilitate current sensing recovery for imaging systems and methods. In one example, a device includes a detector configured to detect electromagnetic radiation and generate a detection signal based on the detected electromagnetic radiation. The device further includes a current sensing circuit configured to provide, based on the detection signal, a first signal. The device further includes a signal generator configured to provide a second signal to adjust a bandwidth associated with the current sensing circuit. The device further includes an imaging integration circuit configured to generate an image of at least a portion of a scene based at least in part on the first signal. Related methods and systems are also provided.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 14, 2020
    Inventors: John D. SCHLESSELMANN, Brian B. SIMOLON
  • Publication number: 20200025679
    Abstract: An IR imaging device includes an optical element receiving infrared radiation from a scene, a filter blocking IR radiation outside of a particular range of wavelengths, an array of sensor pixels to capture an image of the scene based on infrared radiation received through the optical element and filter, the array of sensor pixels comprising a first array of sensor pixels to image gas in within a first spectral bandwidth, and a second array of sensor pixel to sense IR radiation in a second spectral bandwidth where gas is not detected, a read-out integrated circuit (ROIC) and logic circuitry to generate a first image sensed by the first array and a second image sensed by the second array, and gas detection logic to detect the presence of gas in the first image.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Inventors: Hakan E. Nygren, Jonas Sandsten, Per Lilja, Marta Barenthin-Syberg, Henning Hagman, Eric A. Kurth, Brian B. Simolon, Naseem Y. Aziz, Ulf Wallgren