Patents by Inventor Brian Barber

Brian Barber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240100149
    Abstract: Described herein is an anti-class II MHC antibody fused to a SARS-CoV-2 antigen. Also described is a vaccine comprising the antibody and methods for treating and/or preventing SARS-CoV-2, wherein the methods comprise administering the antibody to a subject in need thereof. In typical aspects, the vaccine is free of an adjuvant.
    Type: Application
    Filed: November 5, 2021
    Publication date: March 28, 2024
    Inventors: Jean-Philippe JULIEN, Audrey KASSARDJIAN, Brian BARBER
  • Patent number: 11650168
    Abstract: A method of using a resonant cavity for measuring a complex permittivity ? and identifying of a sample (solid or liquid) of microliter volume size includes using a network analyzer to measure over a defined millimeter wave frequency range, a first resonance frequency at a cavity resonance mode, and calculating an unloaded quality factor of an enclosed resonant waveguide cavity of a defined internal dimensions, placing a sample on a surface of a bottom wall of the resonant waveguide cavity and measure a second resonance frequency and calculating a loaded quality factor; determining, a resonance frequency shift ?f=(fs?fo), determining a complex permittivity ? of the sample according to the resonance frequency shift ?f, the loaded quality factor, the unloaded quality factor and the defined internal dimensions; and identifying the sample using a database through the complex permittivity ?.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: May 16, 2023
    Assignee: Battelle Memorial Institute
    Inventors: Duane Clifford Karns, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith, Zachary J. Landicini
  • Patent number: 11269071
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: March 8, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith
  • Publication number: 20210405180
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Application
    Filed: April 29, 2021
    Publication date: December 30, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith
  • Patent number: 11077627
    Abstract: A protective assembly comprises a first region formulated and configured to provide protection from alpha, beta, and electromagnetic radiation and comprising a composite of particles and polymer; a second region formulated and configured to provide protection from ballistic impact and comprising a composite of fibers and polymer; and a third region formulated and configured to provide protection from thermal radiation and comprising a composite of particles, fiber, and polymer. The protective assembly may be provided on an aerospace structure. The protective assembly may be formed on the aerospace structure body using a co-curing process.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: August 3, 2021
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Steven F. Stone, Matt Armentrout, Christopher Deemer, Carl Madsen, Brian Barber
  • Patent number: 11054517
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: July 6, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith
  • Patent number: 11035949
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: June 15, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith
  • Patent number: 10973958
    Abstract: The present disclosure is directed to an artificial skin having a radar absorbing layer and a conductive layer containing an electrically conductive material, wherein the artificial skin has a reflection coefficient substantially equal to a human skin reflection coefficient, the human skin reflection coefficient being determined at an electromagnetic radiation frequency ranging from 1-500 GHz. A human phantom composed of the artificial skin and methods of testing the contrast resolution sufficiency of and active millimeter wave imaging system using the human phantom are also disclosed.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: April 13, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Jeffrey Brian Barber, Peter Roland Smith, James Christopher Weatherall, Barry Thomas Smith
  • Publication number: 20210088457
    Abstract: A method, a resonant cavity and a system for measuring a complex permittivity a and identifying of a sample (solid or liquid) of microliter volume size is disclosed. The method including using a network analyzer to measure over a defined millimeter wave frequency range, a first resonance frequency at a cavity resonance mode, and calculating an unloaded quality factor of an enclosed resonant waveguide cavity of a defined internal dimensions, placing a sample on a surface of a bottom wall of the resonant waveguide cavity and measure a second resonance frequency and calculating a loaded quality factor; determining, a resonance frequency shift ?f=(fs?fo), determining a complex permittivity ? of the sample according to the resonance frequency shift ?f, the loaded quality factor, the unloaded quality factor and the defined internal dimensions; and identifying the sample using a database through the complex permittivity ?.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 25, 2021
    Inventors: Duane Clifford Karns, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith, Zachary J. Landicini
  • Publication number: 20200348410
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Application
    Filed: July 15, 2020
    Publication date: November 5, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith
  • Patent number: 10697834
    Abstract: The present disclosure is directed to a contrast phantom having a first region with a first reflection coefficient, a second region with a second reflection coefficient, and a third region with a third reflection coefficient, wherein the first reflection coefficient, the second reflection coefficient and the third reflection coefficient are increasing or decreasing in value in discrete steps, and wherein at least one of the regions includes an electrically conductive material having a thickness of about 200 ?m. Methods of testing the contrast resolution of an active millimeter wave imaging system using the contrast phantom are also described.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: June 30, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventor: Jeffrey Brian Barber
  • Publication number: 20190184066
    Abstract: The present disclosure is directed to an artificial skin having a radar absorbing layer and a conductive layer containing an electrically conductive material, wherein the artificial skin has a reflection coefficient substantially equal to a human skin reflection coefficient, the human skin reflection coefficient being determined at an electromagnetic radiation frequency ranging from 1-500 GHz. A human phantom composed of the artificial skin and methods of testing the contrast resolution sufficiency of and active millimeter wave imaging system using the human phantom are also disclosed.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 20, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Jeffrey Brian Barber, Peter Roland Smith, James Christopher Weatherall, Barry Thomas Smith
  • Publication number: 20190178722
    Abstract: The present disclosure is directed to a contrast phantom having a first region with a first reflection coefficient, a second region with a second reflection coefficient, and a third region with a third reflection coefficient, wherein the first reflection coefficient, the second reflection coefficient and the third reflection coefficient are increasing or decreasing in value in discrete steps, and wherein at least one of the regions includes an electrically conductive material having a thickness of about 200 ?m. Methods of testing the contrast resolution of an active millimeter wave imaging system using the contrast phantom are also described.
    Type: Application
    Filed: February 19, 2019
    Publication date: June 13, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventor: Jeffrey Brian Barber
  • Patent number: 10267904
    Abstract: The present disclosure is directed to an artificial skin including: a radar absorbing layer; a conductive layer comprising at least one material selected from the group consisting of a semiconductive oxide deposited onto a substrate and an electrically conductive polymer, wherein the substrate is in contact with the radar absorbing layer, and wherein the artificial skin has a reflection coefficient substantially equal to a human skin reflection coefficient, the human skin reflection coefficient being determined at an electromagnetic radiation frequency ranging from 1-500 GHz. A human phantom composed of the artificial skin and methods of using the human phantom are also disclosed.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: April 23, 2019
    Assignee: The United States of America, as represented by the Secretary of Homeland Security
    Inventors: Jeffrey Brian Barber, Peter Roland Smith, James Christopher Weatherall, Barry Thomas Smith
  • Patent number: 10254170
    Abstract: The present disclosure is directed to a contrast phantom including: at least three regions including: a first region with a first reflection coefficient; a second region with a second reflection coefficient; and a third region with a third reflection coefficient, wherein at least one of the regions includes an electrically conductive material selected from a semiconductive oxide deposited onto a substrate and/or an electrically conductive polymer, wherein the first reflection coefficient, the second reflection coefficient and the third reflection coefficient are increasing or decreasing in value in discrete steps, and wherein the electrically conductive material includes a thickness of about 200 ?m. Methods of using the present contrast phantom are also described.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: April 9, 2019
    Assignee: The United States of America, as represented by the Secretary of Homeland Security
    Inventor: Jeffrey Brian Barber
  • Publication number: 20190060526
    Abstract: The present disclosure is directed to an artificial skin including: a radar absorbing layer; a conductive layer comprising at least one material selected from the group consisting of a semiconductive oxide deposited onto a substrate and an electrically conductive polymer, wherein the substrate is in contact with the radar absorbing layer, and wherein the artificial skin has a reflection coefficient substantially equal to a human skin reflection coefficient, the human skin reflection coefficient being determined at an electromagnetic radiation frequency ranging from 1-500 GHz. A human phantom composed of the artificial skin and methods of using the human phantom are also disclosed.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 28, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventors: Jeffrey Brian Barber, Peter Roland Smith, James Christopher Weatherall, Barry Thomas Smith
  • Publication number: 20190049311
    Abstract: The present disclosure is directed to a contrast phantom including: at least three regions including: a first region with a first reflection coefficient; a second region with a second reflection coefficient; and a third region with a third reflection coefficient, wherein at least one of the regions includes an electrically conductive material selected from a semiconductive oxide deposited onto a substrate and/or an electrically conductive polymer, wherein the first reflection coefficient, the second reflection coefficient and the third reflection coefficient are increasing or decreasing in value in discrete steps, and wherein the electrically conductive material includes a thickness of about 200 ?m. Methods of using the present contrast phantom are also described.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 14, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Security
    Inventor: Jeffrey Brian Barber
  • Publication number: 20180292525
    Abstract: The present disclosure is directed to a measurement system for measuring a reflection coefficient of a test sample, including: a transceiver antenna configured to be coupled to a source of electromagnetic radiation; and a RAM positioned between the transceiver antenna and a measurement region of the transceiver antenna, wherein the RAM comprises an aperture substantially orthogonal to and substantially aligned with a transceiving axis of the transceiver antenna. A method for obtaining error correction of a measurement system and a method of measuring a reflection coefficient in a test sample are also provided.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 11, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of Homeland Securit
    Inventors: Peter Roland Smith, James Christopher Weatherall, Jeffrey Brian Barber, Barry Thomas Smith
  • Patent number: 9526818
    Abstract: A protective cap for fluidly sealing a connector of a cable is provided. The protective cap includes a flexible body having an interior cavity with a distal opening through which the connector is inserted. The distal opening is defined by an annular ridge that engages a cable portion proximal the connector to fluidly seal the entire connector within the cavity. The body portion may have an oval-shaped cross-section while the interior cavity is cylindrical so that the portions wider portions of the body provide longitudinal rigidity to facilitate installation and removal of the cap by a manual pushing and pulling. A tether may be included to attach the cap to a distal portion of the cable. The protective cap and tether may be integrally formed of a soft, highly flexible material to improve ease of use, biocompatibility and patient comfort.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: December 27, 2016
    Assignee: THORATEC CORPORATION
    Inventors: Keith Hamilton Kearsley, Gabe Wegel, Kathryn B. Frederick, Julien Duhamel, Brian Barber
  • Patent number: D748917
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: February 9, 2016
    Assignee: ZIPPO MANUFACTURING COMPANY
    Inventors: James M. McDonough, Brian Barber, Howard Tripp, II, Neal Barnes