Patents by Inventor Brian Bliven

Brian Bliven has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220175395
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Application
    Filed: February 28, 2022
    Publication date: June 9, 2022
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Patent number: 11284906
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: March 29, 2022
    Assignee: McGinley Engineered Solutions, LLC
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Publication number: 20210072269
    Abstract: A handling system for high throughput processing of a large volume of biological samples is provided herein. Such systems can include an array support assembly that supports multiple diagnostic assay modules in an array having at least two dimensions, a loader that loads multiple diagnostic assay cartridges within the multiple diagnostic assay modules. The array support assembly can be movable relative the loader to facilitate loading and unloading so as to provide more efficient processing.
    Type: Application
    Filed: November 20, 2020
    Publication date: March 11, 2021
    Inventors: Ronald Chang, Steven Montgomery, Gregory Mote, Brian Bliven
  • Patent number: 10871498
    Abstract: A handling system for high throughput processing of a large volume of biological samples is provided herein. Such systems can include an array support assembly that supports multiple diagnostic assay modules in an array having at least two dimensions, a loader that loads multiple diagnostic assay cartridges within the multiple diagnostic assay modules. The array support assembly can be movable relative the loader to facilitate loading and unloading so as to provide more efficient processing.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: December 22, 2020
    Assignee: Cepheid
    Inventors: Ronald Chang, Steven Montgomery, Gregory Mote, Brian Bliven
  • Publication number: 20190350594
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Application
    Filed: June 6, 2019
    Publication date: November 21, 2019
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Patent number: 10349952
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: July 16, 2019
    Assignee: McGinley Engineered Solutions, LLC
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Publication number: 20180143215
    Abstract: A handling system for high throughput processing of a large volume of biological samples is provided herein. Such systems can include an array support assembly that supports multiple diagnostic assay modules in an array having at least two dimensions, a loader that loads multiple diagnostic assay cartridges within the multiple diagnostic assay modules. The array support assembly can be movable relative the loader to facilitate loading and unloading so as to provide more efficient processing.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 24, 2018
    Inventors: Ronald Chang, Steven Montgomery, Gregory Mote, Brian Bliven
  • Patent number: 9833244
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: December 5, 2017
    Assignee: McGinley Engineered Solutions, LLC
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Patent number: 9554807
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: January 31, 2017
    Assignee: McGinley Engineered Solutions, LLC
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Publication number: 20170007289
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Application
    Filed: September 23, 2016
    Publication date: January 12, 2017
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Patent number: 9468445
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: October 18, 2016
    Assignee: McGinley Engineered Solutions, LLC
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Publication number: 20150148805
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Application
    Filed: February 4, 2015
    Publication date: May 28, 2015
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Publication number: 20150148806
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Application
    Filed: February 4, 2015
    Publication date: May 28, 2015
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Publication number: 20150141999
    Abstract: Sensing technology methods related thereto for determining cut through of bone and a depth of penetration of a working portion of a surgical instrument (e.g., an oscillating saw blade in a cut). A first sensor outputs a first signal representative of a displacement of the cutting edge of the saw blade in the cut. A second sensor outputs a second signal representative of a force applied to the cutting edge of the saw blade. As such, monitoring the first and/or second sensor may allow for the saw to be stopped upon completion of a cut (e.g., when the saw passes completely through a medium to be cut or upon reaching a predetermined depth for the cut).
    Type: Application
    Filed: November 10, 2014
    Publication date: May 21, 2015
    Inventors: Joseph C. McGinley, Lawson Fisher, Devjeet Mishra, Jim McCrea, Brian Bliven, Martin Leugers
  • Publication number: 20080094574
    Abstract: A sterile hand held slit lamp for laser refractive surgery includes a charging base that charges a battery while a hand held slit lamp is positioned thereon. A sterile supple cover is positioned over a slit lamp handle while supported by the charging base. A sterile gloved operator grasps the slit lamp handle covered by the sterile cover and illuminates an eye with a slit lamp beam. In many embodiments, an operating microscope provides a view of the eye to an operator while the slit lamp beam illuminates the eye. Operator adjustable controls located on the slit lamp handle are manipulated through a sterile cover and control a length, a width and an intensity of the slit lamp beam. An operator wearing sterile gloves adjusts a position of a piece of tissue near an incision, and removes debris from a surgical incision in tissue after viewing the eye illuminated with the hand held slit lamp beam.
    Type: Application
    Filed: December 18, 2007
    Publication date: April 24, 2008
    Applicant: VISX, INCORPORATED
    Inventors: Cary Spediacci, John Weberg, Brian Bliven
  • Patent number: 7355695
    Abstract: A wavefront sensor enhances calibration of a laser ablation system, such as a laser eye surgery system, by measuring one or more characteristics of an ablated test surface. Typically, light is passed through the ablated test surface, and the light is analyzed to determine the test surface characteristics. In some embodiments, the ablated test surface is positioned along a treatment plane. In some embodiments, light is passed through a wavefront sensor, such as a Hartmann-Shack sensor, to convert the light into electrical signals. A processor then converts the electrical signals into data, such as surface maps showing high-order aberrations and/or artifacts on the test surface, refractive power measurements, shape measurements, and the like. Generated data may then be used to calibrate a laser surgery system.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: April 8, 2008
    Assignee: AMO Manufacturing USA, LLC
    Inventors: Junzhong Liang, Dimitri Chernyak, Kingman Yee, Seema Somani, Jeffrey J. Persoff, Walter Huff, Charles Campbell, Charles R. Munnerlyn, Brian Bliven
  • Patent number: 7331672
    Abstract: A sterile hand held slit lamp for laser refractive surgery includes a charging base that charges a battery while a hand held slit lamp is positioned thereon. A sterile supple cover is positioned over a slit lamp handle while supported by the charging base. A sterile gloved operator grasps the slit lamp handle covered by the sterile cover and illuminates an eye with a slit lamp beam. In many embodiments, an operating microscope provides a view of the eye to an operator while the slit lamp beam illuminates the eye. Operator adjustable controls located on the slit lamp handle are manipulated through a sterile cover and control a length, a width and an intensity of the slit lamp beam. An operator wearing sterile gloves adjusts a position of a piece of tissue near an incision, and removes debris from a surgical incision in tissue after viewing the eye illuminated with the hand held slit lamp beam.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: February 19, 2008
    Assignee: VISX, Incorporated
    Inventors: Cary Spediacci, John Weberg, Brian Bliven
  • Patent number: 6973112
    Abstract: The present invention provides systems and methods for filtering particles and assisting gas flow management within laser systems. In one embodiment, a laser apparatus (100) includes an elongate laser chamber defining a chamber cavity (130) and an electrode structure (140) disposed therein. The electrode structure includes an anode (148) spaced apart from a cathode (146). The laser includes an elongate baffle (174) disposed in the laser chamber. The baffle is adapted to arrest a plurality of particles generated within the chamber. In this manner, the baffle operates as a passive filtration system to help filter particles generated within the chamber during laser operation, and may further provide gas flow management capabilities.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: December 6, 2005
    Assignee: Visx, Incorporated
    Inventors: Brian Bliven, David Turnquist
  • Publication number: 20050099602
    Abstract: A sterile hand held slit lamp for laser refractive surgery includes a charging base that charges a battery while a hand held slit lamp is positioned thereon. A sterile supple cover is positioned over a slit lamp handle while supported by the charging base. A sterile gloved operator grasps the slit lamp handle covered by the sterile cover and illuminates an eye with a slit lamp beam. In many embodiments, an operating microscope provides a view of the eye to an operator while the slit lamp beam illuminates the eye. Operator adjustable controls located on the slit lamp handle are manipulated through a sterile cover and control a length, a width and an intensity of the slit lamp beam. An operator wearing sterile gloves adjusts a position of a piece of tissue near an incision, and removes debris from a surgical incision in tissue after viewing the eye illuminated with the hand held slit lamp beam.
    Type: Application
    Filed: June 23, 2004
    Publication date: May 12, 2005
    Applicant: VISX, Incorporated, a Delaware corporation
    Inventors: Cary Spediacci, John Weberg, Brian Bliven
  • Patent number: D908301
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: January 19, 2021
    Assignee: Cepheid
    Inventors: Ronald Chang, Steven M. Montgomery, Gregory Mote, Brian Bliven, Paul Jordan