Patents by Inventor Brian Bobita

Brian Bobita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9132412
    Abstract: An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: September 15, 2015
    Assignee: ENTEGRIS, INC.
    Inventors: J. Donald Carruthers, Karl Boggs, Luping Wang, Shaun M. Wilson, Jose I. Arno, Paul J. Marganski, Steven M. Bilodeau, Peng Zou, Brian Bobita, Joseph D. Sweeney, Douglas Edwards
  • Publication number: 20140020419
    Abstract: An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
    Type: Application
    Filed: September 24, 2013
    Publication date: January 23, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Karl Boggs, Luping Wang, Shaun M. Wilson, Jose I. Arno, Paul J. Marganski, Steven M. Bilodeau, Peng Zou, Brian Bobita, Joseph D. Sweeney
  • Patent number: 8539781
    Abstract: An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material is provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
    Type: Grant
    Filed: June 22, 2008
    Date of Patent: September 24, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Karl Boggs, Luping Wang, Shaun Wilson, Jose I. Arno, Paul J. Marganski, Steven M. Bilodeau, Peng Zou, Brian Bobita, Joseph D. Sweeney, Douglas Edwards
  • Publication number: 20120305450
    Abstract: A method is provided for producing an ultra-low sulfur hydrocarbon product from a hydrocarbon feedstock containing refractory sulfur compounds utilizing a carbon adsorbent. Also described is a hydrocarbon processing system configured to produce an ultra-low sulfur hydrocarbon product from hydrocarbon feedstock containing refractory sulfur compounds. The hydrocarbon processing system also utilizes a carbon adsorbent.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 6, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: J. Donald Carruthers, Frank Dimeo, JR., Brian Bobita
  • Patent number: 8221532
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: July 17, 2012
    Inventors: J. Donald Carruthers, Frank Dimeo, Jr., Brian Bobita
  • Publication number: 20110220518
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Application
    Filed: January 4, 2011
    Publication date: September 15, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: J. Donald Carruthers, Frank Dimeo, JR., Brian Bobita
  • Publication number: 20110048063
    Abstract: An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material is provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
    Type: Application
    Filed: June 22, 2008
    Publication date: March 3, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: J. Donald Carruthers, Karl Boggs, Luping Wang, Shaun Wilson, Jose I. Arno, Paul J. Marganski, Steven M. Bilodeau, Peng Zou, Brian Bobita, Joseph D. Sweeney, Douglas Edwards
  • Patent number: 7862646
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: January 4, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Frank Dimeo, Jr., Brian Bobita
  • Publication number: 20080302246
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Application
    Filed: July 30, 2008
    Publication date: December 11, 2008
    Applicant: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Frank Dimeo, JR., Brian Bobita