Patents by Inventor Brian C. Archambault

Brian C. Archambault has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11554515
    Abstract: An amorphous polylactic acid polymer having a weight average molecular weight in the range of about 35,000 to 180,000 is described. The polylactic acid polymer composition can be hammer milled without cryogenics result in the form of particles wherein 90% of the particles have particle size of about 250 ?m or less and the material has a glass transition temperature of between about 55° C. to about 58° C. and a relative viscosity of about 1.45 to about 1.95 centipoise. The polymer composition can be used to form an aqueous suspension. The material is ideally suited for use in preparing particleboard. A method is disclosed for preparing such polylactic acid polymers. The method involves obtaining an amorphous polylactic acid polymer having a weight average molecular weight of between about 115,000 to about 180,000. Treating the polylactic acid polymer to reduce the molecular weight to between about 35,000 to 45,000 such that it has a glass transition temperature of between about 55° C. and 58° C.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: January 17, 2023
    Assignee: Purdue Research Foundation
    Inventors: Rusi P Taleyarkhan, Brian C Archambault, Alexander Charles Bakken
  • Publication number: 20210023739
    Abstract: An amorphous polylactic acid polymer having a weight average molecular weight in the range of about 35,000 to 180,000 is described. The polylactic acid polymer composition can be hammer milled without cryogenics result in the form of particles wherein 90% of the particles have particle size of about 250 ?m or less and the material has a glass transition temperature of between about 55° C. to about 58° C. and a relative viscosity of about 1.45 to about 1.95 centipoise. The polymer composition can be used to form an aqueous suspension. The material is ideally suited for use in preparing particleboard. A method is disclosed for preparing such polylactic acid polymers. The method involves obtaining an amorphous polylactic acid polymer having a weight average molecular weight of between about 115,000 to about 180,000. Treating the polylactic acid polymer to reduce the molecular weight to between about 35,000 to 45,000 such that it has a glass transition temperature of between about 55° C. and 58° C.
    Type: Application
    Filed: October 9, 2020
    Publication date: January 28, 2021
    Applicant: Purdue Research Foundation
    Inventors: Rusi P. Taleyarkhan, Brian C. Archambault, Alexander Charles Bakken
  • Patent number: 10843372
    Abstract: An amorphous polylactic acid polymer having a weight average molecular weight in the range of about 35,000 to 180,000 is described. The polylactic acid polymer composition can be hammer milled without cryogenics result in the form of particles wherein 90% of the particles have particle size of about 250 ?m or less and the material has a glass transition temperature of between about 55° C. to about 58° C. and a relative viscosity of about 1.45 to about 1.95 centipoise.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: November 24, 2020
    Assignee: Purdue Research Foundation
    Inventors: Rusi P. Taleyarkhan, Brian C Archambault, Alexander Charles Bakken
  • Patent number: 10718874
    Abstract: Methods and systems that utilize centrifugally tensioned metastable fluid detector (CTMFD) sensors and an external probing source to detect the presence of fissile and fissionable materials, including but not limited to special nuclear materials (SNMs), in containers. Such a method includes subjecting a container to probing with a fission-inducing radiation species that induces fission in an fissile or fissionable material, detecting fission neutrons emitted from the fissile or fissionable material with CTMFD sensors that each contain a detection fluid in which the fission neutrons induce cavitation in a centrifugally tensioned portion of the detection fluid. A threshold energy neutron analysis mode is then utilized to reject the radiation species and detect a fraction of the fission neutrons that have energies above a predetermined energy threshold determined by centrifugally-induced tension in the centrifugally tensioned portion of the detection fluid within each of the CTMFD sensors.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: July 21, 2020
    Assignee: Purdue Research Foundation
    Inventors: Rusi P. Taleyarkhan, Brian C. Archambault, Thomas Grimes, Alex Hagen
  • Publication number: 20190277984
    Abstract: Methods and systems that utilize centrifugally tensioned metastable fluid detector (CTMFD) sensors and an external probing source to detect the presence of fissile and fissionable materials, including but not limited to special nuclear materials (SNMs), in containers. Such a method includes subjecting a container to probing with a fission-inducing radiation species that induces fission in an fissile or fissionable material, detecting fission neutrons emitted from the fissile or fissionable material with CTMFD sensors that each contain a detection fluid in which the fission neutrons induce cavitation in a centrifugally tensioned portion of the detection fluid. A threshold energy neutron analysis mode is then utilized to reject the radiation species and detect a fraction of the fission neutrons that have energies above a predetermined energy threshold determined by centrifugally-induced tension in the centrifugally tensioned portion of the detection fluid within each of the CTMFD sensors.
    Type: Application
    Filed: October 23, 2018
    Publication date: September 12, 2019
    Inventors: Rusi P. Taleyarkhan, Brian C. Archambault, Thomas Grimes, Alex Hagen