Patents by Inventor Brian C. Lin

Brian C. Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102941
    Abstract: Methods and systems for calibrating simulated measurement signals generated by a parametric measurement model are described herein. Regression on real measurement signals is performed using a parametric model. The residual fitting error between the real measurement signals and simulated measurement signals generated by the parametric model characterizes the error of the parametric model at each set of estimated values of the one or more floating parameters. Simulated measurement signals are generated by the parametric model at specified values of the floating parameters. A residual fitting error associated with the simulated measurement signals generated at the specified values of the floating parameters is derived from the residual fitting errors calculated by the regression on the real measurement signals. The simulated measurement signals are calibrated by adding the residual fitting error to the uncalibrated, simulated measurement signals.
    Type: Application
    Filed: September 11, 2023
    Publication date: March 28, 2024
    Inventors: Brian C. Lin, David Wu, Song Wu, Tianrong Zhan, Emily Chiu, Andrew Lagodzinski
  • Patent number: 11931122
    Abstract: A teleoperated surgical system is provided comprising: a first robotic surgical instrument; an image capture; a user display; a user input command device coupled to receive user input commands to control movement of the first robotic surgical instrument; and a movement controller coupled to scale a rate of movement of the first robotic surgical instrument, based at least in part upon a surgical skill level at using the first robotic surgical instrument of the user providing the received user input commands, from a rate of movement indicated by the user input commands received at the user input command device.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: March 19, 2024
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: William C. Nowlin, Mahdi Azizian, Simon P. DiMaio, Brian D. Hoffman, Anthony M. Jarc, Henry C. Lin, May Quo-Mei Liu, Ian E. McDowall, Brent Tokarchuk
  • Publication number: 20240088132
    Abstract: An integrated circuit structure includes a sub-fin having (i) a first portion including a p-type dopant and (ii) a second portion including an n-type dopant. A first body of semiconductor material is above the first portion of the sub-fin, and a second body of semiconductor material is above the second portion of the sub-fin. In an example, the first portion of the sub-fin and the second portion of the sub-fin are in contact with each other, to form a PN junction of a diode. For example, the first portion of the sub-fin is part of an anode of the diode, and wherein the second portion of the sub-fin is part of a cathode of the diode.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Applicant: Intel Corporation
    Inventors: Nicholas A. Thomson, Kalyan C. Kolluru, Ayan Kar, Chu-Hsin Liang, Benjamin Orr, Biswajeet Guha, Brian Greene, Chung-Hsun Lin, Sabih U. Omar, Sameer Jayanta Joglekar
  • Publication number: 20230063102
    Abstract: Methods and systems for selecting measurement locations on a wafer for subsequent detailed measurements employed to characterize the entire wafer are described herein. High throughput measurements are performed at a relatively large number of measurement sites on a wafer. The measurement signals are transformed to a new mathematical basis and reduced to a significantly smaller dimension in the new basis. A set of representative measurement sites is selected based on analyzing variation of the high throughput measurement signals. In some embodiments, the spectra are subdivided into a set of different groups. The spectra are grouped together to minimize variance within each group. Furthermore, a die location is selected that is representative of the variance exhibited by the die in each group. A spectrum of a measurement site and corresponding wafer location is selected to correspond most closely to the center point of each cluster.
    Type: Application
    Filed: October 20, 2021
    Publication date: March 2, 2023
    Inventors: Brian C. Lin, Jiqiang Li, Song Wu, Tianrong Zhan, Andrew Lagodzinski