Patents by Inventor Brian Cairl

Brian Cairl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835960
    Abstract: A system includes: a mobile robot comprising a sensor, the robot further comprising a computer, the robot operating in an environment; a server operably connected to the robot via a communication system, the server configured to manage the robot; a controller operably connected to the robot, the controller operably connected to the server, the controller configured to control the robot; and an object of interest marked with a marker at one or more of an approximate height and an approximate field of view of the sensor, the sensor generating data describing the object of interest, the computer configured to identify one or more of the object of interest and the location using one or more of a shape of the object of interest and an intensity of data describing the object of interest.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: December 5, 2023
    Assignee: Zebra Technologies Corporation
    Inventors: Brian Cairl, Derek King, Sarah Elliott, Alex Henning, Melonee Wise, Russell Toris
  • Patent number: 11809173
    Abstract: A system includes: a cart including: four legs; at least one shelf, each shelf attached to each of the legs; the cart having a generally rectangular shape, a width of the cart being longer than a length of the robot, a length of the cart being longer than a length of the robot; four wheels, each wheel attached to a different leg at a bottom of the leg, the wheels configured to roll to facilitate movement of the cart; and a robotic dock, the robotic dock comprising four docking receptacles at ninety degree angles from adjacent docking receptacles; and a robot comprising: a sensor; and a docking module, the docking module comprising retractable docking pins, each retractable docking pin configured, when extended upward, to mate with a corresponding docking receptacle, thereby securing the robot to a bottom shelf of the cart.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: November 7, 2023
    Assignee: Zebra Technologies Corporation
    Inventors: Eric Diehr, Brian Cairl, Sarah Elliott, Levon Avagyan, Rohan Bhargava, Russell Toris, John W. Stewart, III, Derek King, Melonee Wise, Niharika Arora
  • Patent number: 11748903
    Abstract: A system includes a mobile robot, the robot comprising a sensor; and a server operably connected to the robot over a network, the robot being configured to detect an object by processing sensor data using a convolutional neural network. A pipeline for robotic object detection using a convolutional neural network includes: a system comprising a mobile robot, the robot comprising a sensor, the system further comprising a server operably connected to the robot over a network, the robot being configured to detect an object by processing sensor data using a pipeline, the pipeline comprising a convolutional neural network, the pipeline configured to perform a data collection step, the pipeline further configured to perform a data transformation step, the pipeline further configured to perform a convolutional neural network step, the pipeline further configured to perform a network output transformation step, the pipeline further configured to perform a results output step.
    Type: Grant
    Filed: January 1, 2020
    Date of Patent: September 5, 2023
    Assignee: Zebra Technologies Corporation
    Inventor: Brian Cairl
  • Patent number: 11427404
    Abstract: A cart-based workflow system includes: a robot operating in a facility; a server, the server operably connected to the robot, the server configured to do one or more of send the robot a cart transfer location usable for transferring the cart and instruct the robot to specify the cart transfer location; a graphic user interface (GUI) comprising a map of the facility, the GUI operably connected to the server, the GUI configured to do one or more of receive input from a human user and provide output to the human user, the GUI further configured to be usable by the user to coordinate movement of one or more of robots and carts.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: August 30, 2022
    Assignee: Fetch Robotics, Inc.
    Inventors: Brian Cairl, Eric Diehr, Levon Avagyan, Sarah Elliott, Rohan Bhargava, Russell Toris, John W. Stewart, III, Derek King, Melonee Wise, Niharika Arora
  • Patent number: 11331804
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: May 17, 2022
    Assignee: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Publication number: 20210291367
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Publication number: 20210284446
    Abstract: A cart-based workflow system includes: a robot operating in a facility; a server, the server operably connected to the robot, the server configured to do one or more of send the robot a cart transfer location usable for transferring the cart and instruct the robot to specify the cart transfer location; a graphic user interface (GUI) comprising a map of the facility, the GUI operably connected to the server, the GUI configured to do one or more of receive input from a human user and provide output to the human user, the GUI further configured to be usable by the user to coordinate movement of one or more of robots and carts.
    Type: Application
    Filed: April 10, 2019
    Publication date: September 16, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Brian Cairl, Eric Diehr, Levon Avagyan, Sarah Elliott, Rohan Bhargava, Russell Toris, John W. Stewart, Derek King, Melonee Wise, Niharika Arora
  • Patent number: 11059176
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: July 13, 2021
    Assignee: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Patent number: 11059177
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: July 13, 2021
    Assignee: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Publication number: 20210205993
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Publication number: 20210191376
    Abstract: A system includes: a cart including: four legs; at least one shelf, each shelf attached to each of the legs; the cart having a generally rectangular shape, a width of the cart being longer than a length of the robot, a length of the cart being longer than a length of the robot; four wheels, each wheel attached to a different leg at a bottom of the leg, the wheels configured to roll to facilitate movement of the cart; and a robotic dock, the robotic dock comprising four docking receptacles at ninety degree angles from adjacent docking receptacles; and a robot comprising: a sensor; and a docking module, the docking module comprising retractable docking pins, each retractable docking pin configured, when extended upward, to mate with a corresponding docking receptacle, thereby securing the robot to a bottom shelf of the cart.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 24, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Eric Diehr, Brian Cairl, Sarah Elliott, Levon Avagyan, Rohan Bhargava, Russell Toris, John W. Stewart, III, Derek King, Melonee Wise, Niharika Arora
  • Publication number: 20210178595
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 17, 2021
    Applicant: Fetch Robotcs, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Patent number: 10908601
    Abstract: A system includes: a cart including: four legs; at least one shelf, each shelf attached to each of the legs; the cart having a generally rectangular shape, a width of the cart being longer than a length of the robot, a length of the cart being longer than a length of the robot; four wheels, each wheel attached to a different leg at a bottom of the leg, the wheels configured to roll to facilitate movement of the cart; and a robotic dock, the robotic dock comprising four docking receptacles at ninety degree angles from adjacent docking receptacles; and a robot comprising: a sensor; and a docking module, the docking module comprising retractable docking pins, each retractable docking pin configured, when extended upward, to mate with a corresponding docking receptacle, thereby securing the robot to a bottom shelf of the cart.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: February 2, 2021
    Assignee: Fetch Robotics, Inc.
    Inventors: Eric Diehr, Brian Cairl, Sarah Elliott, Levon Avagyan, Rohan Bhargava, Russell Toris, John W. Stewart, III, Derek King, Melonee Wise, Niharika Arora
  • Publication number: 20200324976
    Abstract: A system includes: a cart including: four legs; at least one shelf, each shelf attached to each of the legs; the cart having a generally rectangular shape, a width of the cart being longer than a length of the robot, a length of the cart being longer than a length of the robot; four wheels, each wheel attached to a different leg at a bottom of the leg, the wheels configured to roll to facilitate movement of the cart; and a robotic dock, the robotic dock comprising four docking receptacles at ninety degree angles from adjacent docking receptacles; and a robot comprising: a sensor; and a docking module, the docking module comprising retractable docking pins, each retractable docking pin configured, when extended upward, to mate with a corresponding docking receptacle, thereby securing the robot to a bottom shelf of the cart.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 15, 2020
    Inventors: Eric Diehr, Brian Cairl, Sarah Elliott, Levon Avagyan, Rohan Bhargava, Russell Toris, John W. Stewart, III, Derek King, Melonee Wise, Niharika Arora
  • Publication number: 20200241551
    Abstract: A system for semantically identifying one or more of an object of interest and a location of a mobile robot in an environment of the robot includes: a mobile robot comprising a sensor, the robot further comprising a computer, the robot operating in an environment; a server operably connected to the robot via a communication system, the server configured to manage the robot; a controller operably connected to the robot, the controller operably connected to the server, the controller configured to control the robot; and an object of interest marked with a marker at one or more of an approximate height and an approximate field of view of the sensor, the sensor generating data describing the object of interest, the computer configured to identify one or more of the object of interest and the location using one or more of a shape of the object of interest and an intensity of data describing the object of interest.
    Type: Application
    Filed: January 28, 2019
    Publication date: July 30, 2020
    Inventors: Brian Cairl, Derek King, Sarah Elliott, Alex Henning, Melonee Wise, Russell Toris
  • Publication number: 20200211217
    Abstract: A system includes a mobile robot, the robot comprising a sensor; and a server operably connected to the robot over a network, the robot being configured to detect an object by processing sensor data using a convolutional neural network. A pipeline for robotic object detection using a convolutional neural network includes: a system comprising a mobile robot, the robot comprising a sensor, the system further comprising a server operably connected to the robot over a network, the robot being configured to detect an object by processing sensor data using a pipeline, the pipeline comprising a convolutional neural network, the pipeline configured to perform a data collection step, the pipeline further configured to perform a data transformation step, the pipeline further configured to perform a convolutional neural network step, the pipeline further configured to perform a network output transformation step, the pipeline further configured to perform a results output step.
    Type: Application
    Filed: January 1, 2020
    Publication date: July 2, 2020
    Applicant: Fetch Robotics, Inc.
    Inventor: Brian Cairl