Patents by Inventor Brian Cook

Brian Cook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170063324
    Abstract: Circuits, devices and methods are disclosed, including a phase shifter comprising a first node and a second node, and a first transmission line element having an inductance and a variable capacitance on each side of the inductance, the variable capacitance configured to provide a plurality of capacitance values to yield corresponding phase shift values based on an increment having a magnitude that is less than 90 degrees. In some implementations, the phase shifter further comprises a second transmission line element in series with the first transmission line element, the second transmission line element having an inductance and a variable capacitance on each side of the inductance configured to extend an overall phase shift range provided by the phase shifter.
    Type: Application
    Filed: August 29, 2016
    Publication date: March 2, 2017
    Inventors: Mackenzie Brian COOK, John William Mitchell ROGERS
  • Publication number: 20160251310
    Abstract: The present invention encompasses compounds of the formula (I): wherein the variables are defined herein which are suitable for the modulation of RORC and the treatment of diseases related to the modulation of RORC. The present invention also encompasses processes of making compounds of formula (I) and pharmaceutical preparations containing them.
    Type: Application
    Filed: September 4, 2014
    Publication date: September 1, 2016
    Inventors: Brian COOK, John d. HUBER, Robert Owen HUGHES, Thomas Martin KIRRANE, JR., Celina LASOTA, Xiang LI, Shuang LIANG, Andreas MUGGE, Qiang ZHANG
  • Publication number: 20160200423
    Abstract: Nose landing gear arrangements for aircrafts, aircrafts including such nose landing gear arrangements, and methods for making such nose landing gear arrangements are provided. In one example, a nose landing gear arrangement includes a wheel assembly and a main strut. The main strut is operatively coupled to the wheel assembly and is configured to move between an extended position and a retracted position. The main strut in the extended position extends outside of the fuselage substantially along a generally vertical plane to position the wheel assembly for takeoff and/or landing of the aircraft. The main strut in the retracted position is disposed inside the fuselage. A flexible sheet is disposed adjacent to the main strut and is configured such that when the main strut is in the extended position the flexible sheet is positioned substantially around the main strut.
    Type: Application
    Filed: February 17, 2015
    Publication date: July 14, 2016
    Inventors: Brian Cook, John Louis, Thomas Van de Ven, Robert M. Vieito
  • Publication number: 20160159495
    Abstract: Aircraft landing gear assemblies and aircraft are provided. A landing gear assembly includes a main post and a light element cluster. The main post has a non-rotating portion and a rotatable steering portion. The light element cluster is associated with the non-rotating portion and includes at least two independently illuminating sections.
    Type: Application
    Filed: December 5, 2014
    Publication date: June 9, 2016
    Inventors: Brian Cook, Michael Knight, John Louis, Thomas Van de Ven, Robert M. Vieito
  • Patent number: 9339630
    Abstract: A system for treating a vascular condition includes a catheter having an inner member and an outer member, the outer member concentrically arranged about the inner member and a retractable drug delivery device disposed at a distal end of the inner member. A coating disposed on at least a portion of an outer surface of the retractable drug delivery device includes at least one therapeutic agent.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: May 17, 2016
    Assignee: Medtronic Vascular, Inc.
    Inventors: Brian Cook, James Mitchell, Natividad Vasquez, Gianfranco Pellegrini
  • Patent number: 9290263
    Abstract: Nose landing gear arrangements including a folding follow-up door for reducing airflow noise for aircrafts, aircrafts including such nose landing gear arrangements, and methods for making such nose landing gear arrangements are provided herein. In one example, a nose landing gear arrangement includes a wheel assembly and a main strut. The main strut is operatively coupled to the wheel assembly and is configured to extend outside of the fuselage substantially along a generally vertical plane. A folding follow-up door is pivotally coupled to the main strut and extends to the fuselage. The folding follow-up door includes a first door section and a second door section that extend outwardly in directions away from each other to define an unfolded position. The folding follow-up door is foldable to move the first and second door sections towards each other about the generally vertical plane to define a folded position.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 22, 2016
    Assignee: Gulfstream Aerospace Corporation
    Inventors: Brian Cook, John Louis, Thomas Van de Ven, Robert M. Vieito, Mehdi R. Khorrami
  • Publication number: 20150251750
    Abstract: Nose landing gear arrangements including a folding follow-up door for reducing airflow noise for aircrafts, aircrafts including such nose landing gear arrangements, and methods for making such nose landing gear arrangements are provided herein. In one example, a nose landing gear arrangement includes a wheel assembly and a main strut. The main strut is operatively coupled to the wheel assembly and is configured to extend outside of the fuselage substantially along a generally vertical plane. A folding follow-up door is pivotally coupled to the main strut and extends to the fuselage. The folding follow-up door includes a first door section and a second door section that extend outwardly in directions away from each other to define an unfolded position.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 10, 2015
    Applicant: Gulfstream Aerospace Corporation
    Inventors: Brian Cook, John Louis, Thomas Van de Ven, Robert M. Vieito, Mehdi R. Khorrami
  • Patent number: 9069255
    Abstract: An improved apparatus for thermally developing a flexographic printing element to reveal a relief image on the surface and a method of using the apparatus to develop a flexographic printing element. The apparatus typically comprises means for softening or melting a crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element; at least one roll that is contactable with the imaged surface of the flexographic printing element and capable of moving over at least a portion of the imaged surface of the flexographic printing element to remove the softened or melted non-crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element; and means for maintaining contact between the at least one roll and the imaged and exposed surface of the flexographic printing element. A layer of resilient compressible material is positioned between the flexographic printing element and a supporting conveying means.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: June 30, 2015
    Inventors: Jim Hennessy, David X. Elwell, Nicholas R. Pina, Brian Cook, Ryan Vest
  • Patent number: 8998274
    Abstract: A sliding door latching and locking system is disclosed which includes a latch assembly, a lift rod assembly, and a retainer assembly, among other things. In some embodiments, the latch assembly includes a support member mounted in a movable body and a latching arm pivotally mounted to the support member having a distal end thereof extending outside of the periphery of the movable body, wherein the distal end includes an engagement facilitating portion with a sloped outer surface for contacting an interlocking member.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 7, 2015
    Assignee: Morton Buildings, Inc.
    Inventors: David A. Fehr, Wayne A. Knepp, Brian Cook
  • Publication number: 20140364330
    Abstract: The invention provides a bio-sensing nanodevice comprising: a stabilized G-protein coupled receptor on a support, a real time receptor-ligand binding detection method, a test composition delivery system and a test composition recognition program. The G-protein coupled receptor can be stabilized using surfactant peptide. The nanodevice provides a greater surface area for better precision and sensitivity to odorant detection. The invention further provides a microfluidic chip containing a stabilized G-protein coupled receptor immobilized on a support, and arranged in at least two dimensional microarray system. The invention also provides a method of delivering odorant comprising the step of manipulating the bubbles in complex microfluidic networks wherein the bubbles travel in a microfluidic channel carrying a variety of gas samples to a precise location on a chip. The invention further provides method of fabricating hOR17-4 olfactory receptor.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 11, 2014
    Inventors: Andreas Mershin, Brian Cook, Liselotte Kaiser, Johanna F. Bikker, Yoshikatsu Miura, Daisuke Niwa, Dai Ohnishi, Atsushi Tazuke, Shuguang Zhang
  • Patent number: 8796544
    Abstract: The present invention provides a wet or dry bio-sensitized photoelectric conversion device (photodetector or photovoltaic) comprising: a stabilized biologically-derived sensitizer, such as a stablilized photosystem I (PS-I), deposited on nanowires, semiconductor material, electrodes and a support. The nanowires provide a greater surface area of the light absorption layer for better energy conversion efficiency and are chosen such as to complement the absorption spectrum of the sensitizer and protect the sensitizer from photobleaching.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: August 5, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Andreas Mershin, Brian Cook, Shuguang Zhang
  • Patent number: 8748111
    Abstract: The invention provides a bio-sensing nanodevice comprising: a stabilized G-protein coupled receptor on a support, a real time receptor-ligand binding detection method, a test composition delivery system and a test composition recognition program. The G-protein coupled receptor can be stabilized using surfactant peptide. The nanodevice provides a greater surface area for better precision and sensitivity to odorant detection. The invention further provides a microfluidic chip containing a stabilized G-protein coupled receptor immobilized on a support, and arranged in at least two dimensional microarray system. The invention also provides a method of delivering odorant comprising the step of manipulating the bubbles in complex microfluidic networks wherein the bubbles travel in a microfluidic channel carrying a variety of gas samples to a precise location on a chip. The invention further provides method of fabricating hOR17-4 olfactory receptor.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: June 10, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Andreas Mershin, Brian Cook, Liselotte Kaiser, Johanna F. Bikker, Yoshikatsu Miura, Daisuke Niwa, Dai Ohnishi, Atsushi Tazuke, Shuguang Zhang
  • Patent number: 8739701
    Abstract: The present invention pertains to a process and an apparatus for treating a photosensitive element to form a relief structure suitable for flexographic printing plate. The apparatus comprises an enclosure, a conveyor, a heatable roller with absorbent material conducted over it, and a roller that can significantly smooth or uniformly roughen the relief structure of the flexographic printing plate. Previously selectively cured photosensitive elements are developed by means of the heatable roller by blotting with the absorbent material, and the resulting relief structure is made uniform by way of a smoothing or roughening roller. The flexographic plates produced by the method and apparatus are especially suited to processes that require substantially smoothed or uniformly roughened printing plate surfaces, which are capable of producing better quality printing.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: June 3, 2014
    Inventors: Ryan Vest, Brian Cook, Jim Hennessy, David Elwell
  • Patent number: 8669041
    Abstract: A method of making a relief image printing element having a relief pattern comprising a plurality of relief dots, wherein the photocurable printing blank comprises a backing layer having at least one photocurable layer disposed thereon and a masking layer on the at least one photocurable layer is provided. The method comprising the steps of: a) selectively ablating the masking layer to create an overall image in the masking layer, such that the overall image comprises a sub-image, comprising a pattern of cells, in it; b) applying an oxygen barrier layer on top of the masking layer; c) exposing the printing element to actinic radiation through the oxygen barrier layer and the masking layer; and d) developing the printing blank by removing the barrier layer and the uncured portions of the photocurable layer to reveal the relief image.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: March 11, 2014
    Inventors: Brian Cook, David A. Recchia, Timothy Gotsick
  • Publication number: 20130017493
    Abstract: A method of making a relief image printing element having a relief pattern comprising a plurality of relief dots, wherein the photocurable printing blank comprises a backing layer having at least one photocurable layer disposed thereon and a masking layer on the at least one photocurable layer is provided. The method comprising the steps of: a) selectively ablating the masking layer to create an overall image in the masking layer, such that the overall image comprises a sub-image, comprising a pattern of cells, in it; b) applying an oxygen barrier layer on top of the masking layer; c) exposing the printing element to actinic radiation through the oxygen barrier layer and the masking layer to selectively crosslink and cure the at least one photocurable layer, thereby creating the relief image therein and a textured surface on the printing element; and d) developing the printing blank by removing the barrier layer and the uncured portions of the photocurable layer to reveal the relief image.
    Type: Application
    Filed: July 15, 2011
    Publication date: January 17, 2013
    Inventors: Brian Cook, David A. Recchia, Timothy Gotsick
  • Patent number: 8147898
    Abstract: A drug coating is formed by vaporizing a drug in a deposition chamber having an implantable medical device such as a stent loaded therein. A vacuum is utilized to lower the pressure within the deposition chamber, thereby reducing the temperature necessary to vaporize the drug. The drug is then deposited onto the implantable medical device while in a vapor phase to form the drug coating.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 3, 2012
    Assignee: Medtronic Vascular, Inc.
    Inventors: Paul Coates, Brian Cook
  • Publication number: 20120043767
    Abstract: A sliding door latching and locking system is disclosed which includes a latch assembly, a lift rod assembly, and a retainer assembly, among other things. In some embodiments, the latch assembly includes a support member mounted in a movable body and a latching arm pivotally mounted to the support member having a distal end thereof extending outside of the periphery of the movable body, wherein the distal end includes an engagement facilitating portion with a sloped outer surface for contacting an interlocking member.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 23, 2012
    Inventors: David A. Fehr, Wayne A. Knepp, Brian Cook
  • Publication number: 20120021932
    Abstract: The invention provides a bio-sensing nanodevice comprising: a stabilized G-protein coupled receptor on a support, a real time receptor-ligand binding detection method, a test composition delivery system and a test composition recognition program. The G-protein coupled receptor can be stabilized using surfactant peptide. The nanodevice provides a greater surface area for better precision and sensitivity to odorant detection. The invention further provides a microfluidic chip containing a stabilized G-protein coupled receptor immobilized on a support, and arranged in at least two dimensional microarray system. The invention also provides a method of delivering odorant comprising the step of manipulating the bubbles in complex microfluidic networks wherein the bubbles travel in a microfluidic channel carrying a variety of gas samples to a precise location on a chip. The invention further provides method of fabricating hOR17-4 olfactory receptor.
    Type: Application
    Filed: January 28, 2011
    Publication date: January 26, 2012
    Inventors: Andreas Mershin, Brian Cook, Liselotte Kaiser, Johanna F. Bikker, Yoshikatsu Miura, Daisuke Niwa, Dai Ohnishi, Atsushi Tazuke, Shuguang Zhang
  • Patent number: 8016880
    Abstract: A drug delivery stent is formed by a metallic or polymeric tubular strut which is shaped into a generally cylindrical configuration, the tubular strut having a central lumen for containing a therapeutic substance or drug therein. The tubular strut has a continuous channel extending from the inside surface of the strut to the outside surface of the strut positioned spirally about or in a corkscrew fashion around a circumference of the tubular strut for delivering the therapeutic substance or drug to a stenotic lesion. The spiral or corkscrew channel width may be varied along the length of the strut to control elution rate and/or flexibility of the stent. The pitch of the spiral or corkscrew channel may also be varied along the length of the strut to control flexibility of the stent. The stent may be carried on a balloon of a balloon catheter to a site of a stenotic lesion where the stent is implanted.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: September 13, 2011
    Assignee: Medtronic Vascular, Inc.
    Inventors: Brian Cook, Mark Dolan
  • Patent number: D728182
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: April 28, 2015
    Inventor: Robert Brian Cook