Patents by Inventor Brian Courtney

Brian Courtney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11051761
    Abstract: Intravascular imaging catheters are provided that include a distal sheath portion having a lumen that is configured to optionally receive a guidewire or an imaging assembly. The distal sheath portion may be configured to have dimensions such that when a guidewire is inserted through the lumen and extends through a distal exit port, the distal sheath portion may be employed as a microcatheter. External tissue may be imaged at a location at or near the distal end of the catheter, enabling, for example, the controlled imaging of a total occlusion, and the positioning of the distal end (and guidewire) within a true lumen associated with a total occlusion. A structural stop may be provided at or near the distal end of the distal sheath portion to prohibit extension of the imaging assembly out of the distal exit port, while permitting the extension of the guidewire through the distal exit port.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: July 6, 2021
    Assignee: SUNNYBROOK RESEARCH INSTITUTE
    Inventors: Brian Courtney, Isaac Jourard, Deniz Jafari
  • Patent number: 10902564
    Abstract: Systems and methods are provided for the denoising of images in the presence of broadband noise based on the detection and/or estimation of in-band noise. According to various example embodiments, an estimate of broadband noise that lies within the imaging band is made by detecting or characterizing the out-of-band noise that lies outside of the imaging band. This estimated in-band noise may be employed for denoise the detected imaging waveform. According to other example embodiments, a reference receive circuit that is sensitive to noise within the imaging band, but is isolated from the imaging energy, may be employed to detect and/or characterize the noise within the imaging band. The estimated reference noise may be employed to denoise the detected in-band imaging waveform.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 26, 2021
    Assignee: SUNNYBROOK RESEARCH INSTITUTE
    Inventors: Brian Courtney, Naimul Mefraz Khan, Natasha Alves-Kotzev
  • Publication number: 20200306134
    Abstract: The present disclosure provides a cardio pulmonary resuscitation (CPR) apparatus for performing a chest compression on a patient supported by a support. The apparatus includes an actuator operatively coupled to a compression mechanism for actuating the compression mechanism to perform the chest compression. The compression mechanism is securable to the support and is configured to repeatedly perform chest compressions on the patient in an operating space, the operating space being the space in which the compression mechanism operates. The actuator is positioned outside of the operating space. The present disclosure further provides a monitoring system having the CPR apparatus and a feedback system coupled to the CPR apparatus.
    Type: Application
    Filed: March 26, 2020
    Publication date: October 1, 2020
    Inventors: Miles MONTGOMERY, Reniel ENGELBRECHT, Brian COURTNEY, Michelle JENNETT
  • Publication number: 20200289086
    Abstract: The present invention provides scanning mechanisms for imaging probes using for imaging mammalian tissues and structures using high resolution imaging, including high frequency ultrasound and/or optical coherence tomography. The imaging probes include adjustable rotational drive mechanism for imparting rotational motion to an imaging assembly containing either optical or ultrasound transducers which emit energy into the surrounding area. The imaging assembly includes a scanning mechanism having including a movable member configured to deliver the energy beam along a path out of said elongate hollow shaft at a variable angle with respect to said longitudinal axis to give forward and side viewing capability of the imaging assembly. The movable member is mounted in such a way that the variable angle is a function of the angular velocity of the imaging assembly.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Inventors: Brian COURTNEY, Nigel Robert MUNCE, Amandeep Singh THIND, Victor Xiao Dong YANG, Francis Stuart FOSTER, Alan SOONG, Brian Heng LI
  • Patent number: 10699411
    Abstract: The present disclosure provides methods to process and/or display data collected using 3D imaging probes. The methods include: a) methods for mapping a single 2D frame onto a 3D representation of a volume; b) methods for dynamically updating portions of a 3D representation of a volume with a high temporal resolution, while leaving the remainder of the volume for contextual reference; c) methods for registering volumetric datasets acquired with high temporal resolution with volumetric datasets acquired with relatively low temporal resolution in order to estimate relative displacement between the datasets; and d) methods for identifying structures within a volume and applying visual cues to the structures in subsequent volumes containing the structures.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: June 30, 2020
    Assignees: SUNNYBROOK RESEARCH INSTITUTE, COLIBRI TECHNOLOGIES INC.
    Inventors: Brian Courtney, Neil Witcomb
  • Patent number: 10667785
    Abstract: The present invention provides scanning mechanisms for imaging probes using for imaging mammalian tissues and structures using high resolution imaging, including high frequency ultrasound and/or optical coherence tomography. The imaging probes include adjustable rotational drive mechanism for imparting rotational motion to an imaging assembly containing either optical or ultrasound transducers which emit energy into the surrounding area. The imaging assembly includes a scanning mechanism having including a movable member configured to deliver the energy beam along a path out of said elongate hollow shaft at a variable angle with respect to said longitudinal axis to give forward and side viewing capability of the imaging assembly. The movable member is mounted in such a way that the variable angle is a function of the angular velocity of the imaging assembly.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: June 2, 2020
    Assignee: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Brian Courtney, Nigel Robert Munce, Amandeep Singh Thind, Victor Xiao Dong Yang, Francis Stuart Foster, Alan Soong, Brian Heng Li
  • Publication number: 20200082509
    Abstract: Systems and methods are provided for the denoising of images in the presence of broadband noise based on the detection and/or estimation of in-band noise. According to various example embodiments, an estimate of broadband noise that lies within the imaging band is made by detecting or characterizing the out-of-band noise that lies outside of the imaging band. This estimated in-band noise may be employed for denoise the detected imaging waveform. According to other example embodiments, a reference receive circuit that is sensitive to noise within the imaging band, but is isolated from the imaging energy, may be employed to detect and/or characterize the noise within the imaging band. The estimated reference noise may be employed to denoise the detected in-band imaging waveform.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Brian COURTNEY, Naimul Mefraz KHAN, Natasha ALVES-KOTZEV
  • Publication number: 20190374196
    Abstract: The present disclosure provides for an imaging probe with a rotatable core which allows for rotating imaging assembly that is larger in diameter than the lumen in which the rotatable core resides, as well as methods to construct said probes. The imaging probes are generally elongate flexible imaging catheters for use in cardiovascular procedures. The ability to have a smaller lumen to hold the rotatable core simplifies the inclusion of other functional components to the catheter and may improve the quality of the images produced.
    Type: Application
    Filed: February 27, 2017
    Publication date: December 12, 2019
    Inventors: Brian COURTNEY, Alan SOONG, Deniz JAFARI
  • Publication number: 20190357877
    Abstract: Methods and apparatus are provided for electrically addressing multiple ultrasonic transducers that are connected to a common electrical channel and housed within an imaging probe. An imaging probe may comprise an imaging ultrasonic transducer and a moveable element for controlling the direction of an emitted imaging beam, and an angle sensing ultrasonic transducer, where the angle sensing ultrasonic transducer is configured for determining the direction of an ultrasonic imaging beam. The angle-sensing transducer may be configured to direct an angle sensing ultrasonic beam towards an acoustically reflective substrate and provide a signal by detecting a reflected ultrasonic beam reflected from the acoustically reflective substrate, where the acoustically reflective substrate is positioned relative to the movable element such that motion of the movable element produces a change in the signal.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Brian COURTNEY, Amandeep THIND
  • Patent number: 10482582
    Abstract: Systems and methods are provided for the denoising of images in the presence of broadband noise based on the detection and/or estimation of in-band noise. According to various example embodiments, an estimate of broadband noise that lies within the imaging band is made by detecting or characterizing the out-of-band noise that lies outside of the imaging band. This estimated in-band noise may be employed for denoise the detected imaging waveform. According to other example embodiments, a reference receive circuit that is sensitive to noise within the imaging band, but is isolated from the imaging energy, may be employed to detect and/or characterize the noise within the imaging band. The estimated reference noise may be employed to denoise the detected in-band imaging waveform.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: November 19, 2019
    Assignee: SUNNYBROOK RESEARCH INSTITUTE
    Inventors: Brian Courtney, Naimul Mefraz Khan, Natasha Alves-Kotzev
  • Patent number: 10390791
    Abstract: Methods and apparatus are provided for electrically addressing multiple ultrasonic transducers that are connected to a common electrical channel and housed within an imaging probe. An imaging probe may comprise an imaging ultrasonic transducer and a moveable element for controlling the direction of an emitted imaging beam, and an angle sensing ultrasonic transducer, where the angle sensing ultrasonic transducer is configured for determining the direction of an ultrasonic imaging beam. The angle-sensing transducer may be configured to direct an angle sensing ultrasonic beam towards an acoustically reflective substrate and provide a signal by detecting a reflected ultrasonic beam reflected from the acoustically reflective substrate, where the acoustically reflective substrate is positioned relative to the movable element such that motion of the movable element produces a change in the signal.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: August 27, 2019
    Assignee: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Brian Courtney, Amandeep Thind
  • Patent number: 10328463
    Abstract: Methods and devices are provided for suppressing reverberations within an ultrasound transducer with a backing whereby the backing may not sufficiently attenuate the acoustic energy by means of acoustic absorption and scattering alone. At least a portion of a surface of the backing is segmented into a plurality of levels defined by surface segments. The levels may be are spatially offset so that acoustic reflections from the segmented surface are spread out in time, thereby decreasing the net amplitude of the internally reflected waves as they interact with the piezoelectric layer. Adjacent (neighboring) levels may be spatially offset by a longitudinal distance equaling approximately an odd number multiple of a quarter of an operational wavelength of the transducer, so that destructive interference occurs from acoustic waves reflected from adjacent levels. Various example configurations of segmented surfaces are described, and methods for selecting a profile of a segmented surface are provided.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: June 25, 2019
    Assignee: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Marc Lukacs, Brian Courtney, Chelsea Munding
  • Publication number: 20180253830
    Abstract: Systems and methods are provided for the denoising of images in the presence of broadband noise based on the detection and/or estimation of in-band noise. According to various example embodiments, an estimate of broadband noise that lies within the imaging band is made by detecting or characterizing the out-of-band noise that lies outside of the imaging band. This estimated in-band noise may be employed for denoise the detected imaging waveform. According to other example embodiments, a reference receive circuit that is sensitive to noise within the imaging band, but is isolated from the imaging energy, may be employed to detect and/or characterize the noise within the imaging band. The estimated reference noise may be employed to denoise the detected in-band imaging waveform.
    Type: Application
    Filed: February 23, 2018
    Publication date: September 6, 2018
    Inventors: Brian COURTNEY, Naimul Mefraz KHAN, Natasha ALVES-KOTZEV
  • Publication number: 20180158190
    Abstract: The present disclosure provides methods to process and/or display data collected using 3D imaging probes. The methods include: a) methods for mapping a single 2D frame onto a 3D representation of a volume; b) methods for dynamically updating portions of a 3D representation of a volume with a high temporal resolution, while leaving the remainder of the volume for contextual reference; c) methods for registering volumetric datasets acquired with high temporal resolution with volumetric datasets acquired with relatively low temporal resolution in order to estimate relative displacement between the datasets; and d) methods for identifying structures within a volume and applying visual cues to the structures in subsequent volumes containing the structures.
    Type: Application
    Filed: October 6, 2017
    Publication date: June 7, 2018
    Inventors: Brian Courtney, Neil Witcomb
  • Patent number: 9907536
    Abstract: Systems and methods are provided for performing a minimally invasive procedure in an automated or semi-automated fashion, where an imaging probe having an imaging modality compatible with the presence of an intraluminal medium is employed to record images that are processed to identify regions of interest and direct a medium displacement operation during a subsequent minimally invasive operation that benefits from the displacement of the intraluminal medium. The minimally invasive operation may include recording images with a second imaging modality, or may be a therapeutic treatment. The method is may be performed in real-time, where images obtained from the first imaging modality are processed in real time to determine whether or not the minimally invasive operation is to be performed at a given position.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: March 6, 2018
    Assignee: CONAVI MEDICAL INC.
    Inventors: Brian Courtney, Amandeep Thind
  • Publication number: 20180008230
    Abstract: Methods and apparatus are provided for electrically addressing multiple ultrasonic transducers that are connected to a common electrical channel and housed within an imaging probe. An imaging probe may comprise an imaging ultrasonic transducer and a moveable element for controlling the direction of an emitted imaging beam, and an angle sensing ultrasonic transducer, where the angle sensing ultrasonic transducer is configured for determining the direction of an ultrasonic imaging beam. The angle-sensing transducer may be configured to direct an angle sensing ultrasonic beam towards an acoustically reflective substrate and provide a signal by detecting a reflected ultrasonic beam reflected from the acoustically reflective substrate, where the acoustically reflective substrate is positioned relative to the movable element such that motion of the movable element produces a change in the signal.
    Type: Application
    Filed: June 26, 2017
    Publication date: January 11, 2018
    Inventors: Brian COURTNEY, Amandeep THIND
  • Patent number: 9839410
    Abstract: A catheter is provided that includes an external sheath, a rotatable conduit housed within the external sheath, and a fluid rotary joint having a rotatable insert that places an inner lumen of the rotatable conduit in fluid communication with an external port under rotation of the rotatable conduit. The rotatable insert may include a channel structure including an external annular channel. The rotatable conduit is received within the channel structure such that the inner lumen is in fluid communication with the external port through the annular channel under rotation. The external sheath may define an outer lumen that may be in fluid communication with the inner lumen at a location remote from a proximal portion of the catheter, and the outer lumen may be in fluid communication with a secondary port. The rotatable conduit may be housed within a torque cable that is connected to the rotatable insert.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: December 12, 2017
    Assignee: CONAVI MEDICAL INC.
    Inventors: Brian Courtney, Amandeep Thind, Isaac Jourard
  • Patent number: 9786056
    Abstract: The present disclosure provides methods to process and/or display data collected using 3D imaging probes. The methods include: a) methods for mapping a single 2D frame onto a 3D representation of a volume; b) methods for dynamically updating portions of a 3D representation of a volume with a high temporal resolution, while leaving the remainder of the volume for contextual reference; c) methods for registering volumetric datasets acquired with high temporal resolution with volumetric datasets acquired with relatively low temporal resolution in order to estimate relative displacement between the datasets; and d) methods for identifying structures within a volume and applying visual cues to the structures in subsequent volumes containing the structures.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: October 10, 2017
    Assignees: SUNNYBROOK RESEARCH INSTITUTE, CONAVI MEDICAL INC.
    Inventors: Brian Courtney, Neil Witcomb
  • Patent number: 9700280
    Abstract: Methods and apparatus are provided for electrically addressing multiple ultrasonic transducers that are connected to a common electrical channel and housed within an imaging probe. An imaging probe may comprise an imaging ultrasonic transducer and a moveable element for controlling the direction of an emitted imaging beam, and an angle sensing ultrasonic transducer, where the angle sensing ultrasonic transducer is configured for determining the direction of an ultrasonic imaging beam. The angle-sensing transducer may be configured to direct an angle sensing ultrasonic beam towards an acoustically reflective substrate and provide a signal by detecting a reflected ultrasonic beam reflected from the acoustically reflective substrate, where the acoustically reflective substrate is positioned relative to the movable element such that motion of the movable element produces a change in the signal.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: July 11, 2017
    Assignee: SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Brian Courtney, Amandeep Thind
  • Publication number: 20170007203
    Abstract: A catheter is provided that includes an external sheath, a rotatable conduit housed within the external sheath, and a fluid rotary joint having a rotatable insert that places an inner lumen of the rotatable conduit in fluid communication with an external port under rotation of the rotatable conduit. The rotatable insert may include a channel structure including an external annular channel. The rotatable conduit is received within the channel structure such that the inner lumen is in fluid communication with the external port through the annular channel under rotation. The external sheath may define an outer lumen that may be in fluid communication with the inner lumen at a location remote from a proximal portion of the catheter, and the outer lumen may be in fluid communication with a secondary port. The rotatable conduit may be housed within a torque cable that is connected to the rotatable insert.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 12, 2017
    Inventors: Brian COURTNEY, Amandeep THIND, Isaac JOURARD