Patents by Inventor Brian Creed

Brian Creed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940254
    Abstract: A projectile designed to be lead-free and have a ballistic coefficient ranging from about 0.13 to about 0.80 or greater for enhanced energy/performance at extended ranges may have an elongated body formed with a jacket including a wall having an end defining an ogive portion and a cavity or recess defined within the jacket and in which a core is received. The projectile can be configured in various calibers and sizes. The projectile core may be formed from a plurality of core sections, and at least one of the plurality of core sections may include tungsten powder and a lead-free binder material pressed together to form a substantially cylindrical shape or compact. One or more of the core sections further can be sintered, and the one or more core sections may be received in an end-to-end relationship within the cavity defined by the jacket to form a stacked, sectional core.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: March 26, 2024
    Assignee: Barnes Bullets, LLC
    Inventors: Jason Wesley Robbins, Carl Carter, Christopher Creed Crosby, Gregory S. Christensen, Mitchell Dean Kukson, Brian James Simons, Greggory Sloan, Michael Painter
  • Patent number: 11569393
    Abstract: Embodiments are provided herein for low loss coupling capacitor structures. The embodiments include a n-type varactor (NVAR) configuration and p-type varactor (PVAR) configuration. The structure in the NVAR configuration comprises a p-doped semiconductor substrate (Psub), a deep n-doped semiconductor well (DNW) in the Psub, and a p-doped semiconductor well (P well) in the DNW. The circuit structure further comprises a source terminal of a p-doped semiconductor material within P well, and a drain terminal of the p-doped semiconductor material within the P well. Additionally, the circuit structure comprises an insulated gate on the surface of the P well, a metal pattern comprising a plurality of layers of metal lines, and a plurality of vias through the metal lines. The vias are contacts connecting the metal lines to the gate, the source terminal, and the drain terminal.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: January 31, 2023
    Assignee: Futurewei Technologies, Inc.
    Inventors: Brian Creed, Lawrence E. Connell, Kent Jaeger, Matthew Richard Miller
  • Patent number: 11552663
    Abstract: The disclosure relates to technology for an apparatus having a current conveyer comprising a first stage having a first differential input, and a second stage having a second differential input. The first and second stages are configured to operate in a push-pull mode to provide an output signal at a current conveyer output between the first stage and the second stage. The apparatus has a first frequency mixer configured to generate a first mixer signal based on an input signal and an oscillator signal having a first frequency. The first frequency mixer is configured to provide the first mixer signal to the first differential input. The apparatus has a second frequency mixer configured to generate a second mixer signal based on the input signal and a second oscillator signal having the first frequency. The second frequency mixer is configured to provide the second mixer signal to the second differential input.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: January 10, 2023
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Matthew Richard Miller, Brian Creed, Terrie McCain
  • Publication number: 20210091815
    Abstract: The disclosure relates to technology for an apparatus having a current conveyer comprising a first stage having a first differential input, and a second stage having a second differential input. The first and second stages are configured to operate in a push-pull mode to provide an output signal at a current conveyer output between the first stage and the second stage. The apparatus has a first frequency mixer configured to generate a first mixer signal based on an input signal and an oscillator signal having a first frequency. The first frequency mixer is configured to provide the first mixer signal to the first differential input. The apparatus has a second frequency mixer configured to generate a second mixer signal based on the input signal and a second oscillator signal having the first frequency. The second frequency mixer is configured to provide the second mixer signal to the second differential input.
    Type: Application
    Filed: December 9, 2020
    Publication date: March 25, 2021
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Matthew Richard Miller, Brian Creed, Terrie McCain
  • Publication number: 20200321479
    Abstract: Embodiments are provided herein for low loss coupling capacitor structures. The embodiments include a n-type varactor (NVAR) configuration and p-type varactor (PVAR) configuration. The structure in the NVAR configuration comprises a p-doped semiconductor substrate (Psub), a deep n-doped semiconductor well (DNW) in the Psub, and a p-doped semiconductor well (P well) in the DNW. The circuit structure further comprises a source terminal of a p-doped semiconductor material within P well, and a drain terminal of the p-doped semiconductor material within the P well. Additionally, the circuit structure comprises an insulated gate on the surface of the P well, a metal pattern comprising a plurality of layers of metal lines, and a plurality of vias through the metal lines. The vias are contacts connecting the metal lines to the gate, the source terminal, and the drain terminal.
    Type: Application
    Filed: March 9, 2020
    Publication date: October 8, 2020
    Applicant: Futurewei Technologies, Inc.
    Inventors: Brian Creed, Lawrence E. Connell, Kent Jaeger, Matthew Richard Miller
  • Patent number: 10715195
    Abstract: The disclosure relates to technology for an apparatus having a current conveyer comprising a first stage having a first differential input, and a second stage having a second differential input. The first and second stages are configured to operate in a push-pull mode to provide an output signal at a current conveyer output between the first stage and the second stage. The apparatus has a first frequency mixer configured to generate a first mixer signal based on an input signal and an oscillator signal having a first frequency. The first frequency mixer is configured to provide the first mixer signal to the first differential input. The apparatus has a second frequency mixer configured to generate a second mixer signal based on the input signal and a second oscillator signal having the first frequency. The second frequency mixer is configured to provide the second mixer signal to the second differential input.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: July 14, 2020
    Assignee: Futurewei Technologies, Inc.
    Inventors: Matthew Richard Miller, Brian Creed, Terrie McCain
  • Patent number: 10586878
    Abstract: Embodiments are provided herein for low loss coupling capacitor structures. The embodiments include a n-type varactor (NVAR) configuration and p-type varactor (PVAR) configuration. The structure in the NVAR configuration comprises a p-doped semiconductor substrate (Psub), a deep n-doped semiconductor well (DNW) in the Psub, and a p-doped semiconductor well (P well) in the DNW. The circuit structure further comprises a source terminal of a p-doped semiconductor material within P well, and a drain terminal of the p-doped semiconductor material within the P well. Additionally, the circuit structure comprises an insulated gate on the surface of the P well, a metal pattern comprising a plurality of layers of metal lines, and a plurality of vias through the metal lines. The vias are contacts connecting the metal lines to the gate, the source terminal, and the drain terminal.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: March 10, 2020
    Assignee: Futurewei Technologies, Inc.
    Inventors: Brian Creed, Lawrence Connell, Kent Jaeger, Matthew Richard Miller
  • Publication number: 20190386694
    Abstract: The disclosure relates to technology for an apparatus having a current conveyer comprising a first stage having a first differential input, and a second stage having a second differential input. The first and second stages are configured to operate in a push-pull mode to provide an output signal at a current conveyer output between the first stage and the second stage. The apparatus has a first frequency mixer configured to generate a first mixer signal based on an input signal and an oscillator signal having a first frequency. The first frequency mixer is configured to provide the first mixer signal to the first differential input. The apparatus has a second frequency mixer configured to generate a second mixer signal based on the input signal and a second oscillator signal having the first frequency. The second frequency mixer is configured to provide the second mixer signal to the second differential input.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 19, 2019
    Applicant: Futurewei Technologies, Inc.
    Inventors: Matthew Richard Miller, Brian Creed, Terrie McCain
  • Publication number: 20180090627
    Abstract: Embodiments are provided herein for low loss coupling capacitor structures. The embodiments include a n-type varactor (NVAR) configuration and p-type varactor (PVAR) configuration. The structure in the NVAR configuration comprises a p-doped semiconductor substrate (Psub), a deep n-doped semiconductor well (DNW) in the Psub, and a p-doped semiconductor well (P well) in the DNW. The circuit structure further comprises a source terminal of a p-doped semiconductor material within P well, and a drain terminal of the p-doped semiconductor material within the P well. Additionally, the circuit structure comprises an insulated gate on the surface of the P well, a metal pattern comprising a plurality of layers of metal lines, and a plurality of vias through the metal lines. The vias are contacts connecting the metal lines to the gate, the source terminal, and the drain terminal.
    Type: Application
    Filed: December 4, 2017
    Publication date: March 29, 2018
    Inventors: Brian Creed, Lawrence Connell, Kent Jaeger, Matthew Richard Miller
  • Patent number: 9837555
    Abstract: Embodiments are provided herein for low loss coupling capacitor structures. The embodiments include a n-type varactor (NVAR) configuration and p-type varactor (PVAR) configuration. The structure in the NVAR configuration comprises a p-doped semiconductor substrate (Psub), a deep n-doped semiconductor well (DNW) in the Psub, and a p-doped semiconductor well (P well) in the DNW. The circuit structure further comprises a source terminal of a p-doped semiconductor material within P well, and a drain terminal of the p-doped semiconductor material within the P well. Additionally, the circuit structure comprises an insulated gate on the surface of the P well, a metal pattern comprising a plurality of layers of metal lines, and a plurality of vias through the metal lines. The vias are contacts connecting the metal lines to the gate, the source terminal, and the drain terminal.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: December 5, 2017
    Assignee: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Brian Creed, Lawrence Connell, Kent Jaeger, Matthew Richard Miller
  • Publication number: 20160308073
    Abstract: Embodiments are provided herein for low loss coupling capacitor structures. The embodiments include a n-type varactor (NVAR) configuration and p-type varactor (PVAR) configuration. The structure in the NVAR configuration comprises a p-doped semiconductor substrate (Psub), a deep n-doped semiconductor well (DNW) in the Psub, and a p-doped semiconductor well (P well) in the DNW. The circuit structure further comprises a source terminal of a p-doped semiconductor material within P well, and a drain terminal of the p-doped semiconductor material within the P well. Additionally, the circuit structure comprises an insulated gate on the surface of the P well, a metal pattern comprising a plurality of layers of metal lines, and a plurality of vias through the metal lines. The vias are contacts connecting the metal lines to the gate, the source terminal, and the drain terminal.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 20, 2016
    Inventors: Brian Creed, Lawrence Connell, Kent Jaeger, Matthew Richard Miller
  • Patent number: 6664826
    Abstract: A loop filter and amplifier (206) is configured to generate a control voltage (VC) by applying low gain to a correction voltage (VP) in response to an input signal (VH/L) indicating that the VCO (202) is to operate at low frequencies and applying high gain to the correction voltage in response to the input signal indicating that the VCO is to operate at high frequencies. A loop filter and amplifier (306) is configured to generate a control voltage (VC) by shifting the control voltage by an amount determined by an offset voltage (VOFF) and by adjusting the control voltage with a correction voltage (VP). An operational amplifier (310) is configured to generate a difference between the amount determined by the offset voltage and the correction voltage.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: December 16, 2003
    Assignee: Motorola, Inc.
    Inventors: Brian Creed, David J. Smentek, William C. Hart