Patents by Inventor Brian D. Anderson

Brian D. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11905043
    Abstract: Systems and methods are described for computing a trajectory of an object in space to a secondary body (M2) in orbit around a primary body to land on, or capture into orbit, or flyby M2 in a Three-Or-More Body Problem. A special plotting of sampled vectors from M2 are integrated backward using a Poincaré Map to form a “Swiss Cheese plot” to find a nominal trajectory. A funnel-like set of trajectories can be constructed along the nominal trajectory for navigation purposes. A global resonant encounter map over a sphere around M2 can be constructed to provide trajectories to, for example, flyby any point near M2, capture into orbit over any point about M2, land on any point on M2. Besides space exploration, there are many applications to the development of Cislunar space commercialization and colonization including asteroid capture and mining.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: February 20, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Martin W. Lo, Brian D. Anderson, Ryan Burns, Damon Landau, Jared T. Blanchard
  • Publication number: 20220119133
    Abstract: Systems and methods are described for computing a trajectory of an object in space to a secondary body (M2) in orbit around a primary body to land on, or capture into orbit, or flyby M2 in a Three-Or-More Body Problem. A special plotting of sampled vectors from M2 are integrated backward using a Poincaré Map to form a “Swiss Cheese plot” to find a nominal trajectory. A funnel-like set of trajectories can be constructed along the nominal trajectory for navigation purposes. A global resonant encounter map over a sphere around M2 can be constructed to provide trajectories to, for example, flyby any point near M2, capture into orbit over any point about M2, land on any point on M2. Besides space exploration, there are many applications to the development of Cislunar space commercialization and colonization including asteroid capture and mining.
    Type: Application
    Filed: October 20, 2021
    Publication date: April 21, 2022
    Inventors: Martin W. LO, Brian D. ANDERSON, Ryan BURNS, Damon LANDAU, Jared T. BLANCHARD
  • Patent number: 10701405
    Abstract: An in-flight entertainment (IFE) system for an aircraft includes a phased array antenna and control circuitry associated therewith to be carried by the aircraft and to generate dual antenna beams for television programming and Internet data from respective spaced apart satellites. A television programming distribution system is to be carried by the aircraft and coupled to the phased array antenna and control circuitry to provide television programming within the aircraft. At least one access point is to be carried by the aircraft and coupled to the phased array antenna and control circuitry to provide a wireless local area network (WLAN) within the aircraft for the Internet data.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: June 30, 2020
    Assignee: THALES AVIONICS, INC.
    Inventors: Jeffrey A. Frisco, Michael J. Lynch, Brian D. Anderson, R. Michael Keen
  • Publication number: 20180167644
    Abstract: An in-flight entertainment (IFE) system for an aircraft includes a phased array antenna and control circuitry associated therewith to be carried by the aircraft and to generate dual antenna beams for television programming and Internet data from respective spaced apart satellites. A television programming distribution system is to be carried by the aircraft and coupled to the phased array antenna and control circuitry to provide television programming within the aircraft. At least one access point is to be carried by the aircraft and coupled to the phased array antenna and control circuitry to provide a wireless local area network (WLAN) within the aircraft for the Internet data.
    Type: Application
    Filed: January 26, 2018
    Publication date: June 14, 2018
    Inventors: Jeffrey A. Frisco, Michael J. Lynch, Brian D. Anderson, R. Michael Keen
  • Patent number: 9918109
    Abstract: An in-flight entertainment (IFE) system for an aircraft includes a phased array antenna and control circuitry associated therewith to be carried by the aircraft and to generate dual antenna beams for television programming and Internet data from respective spaced apart satellites. A television programming distribution system is to be carried by the aircraft and coupled to the phased array antenna and control circuitry to provide television programming within the aircraft. At least one access point is to be carried by the aircraft and coupled to the phased array antenna and control circuitry to provide a wireless local area network (WLAN) within the aircraft for the Internet data.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 13, 2018
    Assignee: LIVETV, LLC
    Inventors: Jeffrey A. Frisco, Michael J. Lynch, Brian D. Anderson, R. Michael Keen
  • Patent number: 9537207
    Abstract: An antenna assembly is for a fuselage of an aircraft and includes a first satellite antenna operable in a first frequency range, a second satellite antenna operable in a second frequency range, and a radome covering the first and second satellite antennas. The radome includes, in stacked relation, an inner skin having a quartz fabric and epoxy resin, an inner core having epoxy syntactic foam, a center laminate having quartz fabric and epoxy resin, an outer core having epoxy syntactic foam, and an outer skin having quartz fabric and epoxy resin. A fairing mounts the radome to the fuselage of the aircraft.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: January 3, 2017
    Assignee: THALES, INC.
    Inventors: R. Michael Keen, Brian D. Anderson, David Halsey, Kurt Strickler
  • Patent number: 9531064
    Abstract: An antenna assembly is for a fuselage of an aircraft and includes a satellite antenna, a radome covering the satellite antenna, and attachment fittings for coupling to the fuselage of the aircraft. The attachment fittings include fore, aft and side attachment fittings. The fore attachment fittings react to vertical, lateral and longitudinal loads. The aft attachment fittings react to vertical and lateral loads and permit longitudinal displacement. Left side and right side attachment fittings react to vertical loads and permit lateral and longitudinal displacement. A fairing mounts the radome to the attachment fittings.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: December 27, 2016
    Assignee: THALES, INC.
    Inventors: R. Michael Keen, William David McCune, Brian D. Anderson
  • Patent number: 9426512
    Abstract: An aircraft in-flight entertainment (IFE) system for an aircraft includes a radome to be carried by the aircraft, and a dual-beam satellite antenna and at least one positioner coupled thereto to be carried by the aircraft and protected by the radome. The dual-beam satellite antenna is to generate dual antenna beams for television programming and Internet data from respective spaced apart satellites. The dual-beam satellite antenna includes a first aperture for receiving the television programming, and a second aperture adjacent the first aperture for receiving the Internet data. A television programming distribution system is to be carried by the aircraft and coupled to the dual-beam satellite antenna to provide television programming within the aircraft. At least one access point is to be carried by the aircraft and coupled to the dual-beam satellite antenna to provide a wireless local area network (WLAN) within the aircraft for the Internet data.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: August 23, 2016
    Assignee: LIVETV, LLC
    Inventors: Jeffrey A. Frisco, Michael J. Lynch, Brian D. Anderson, Robert M. Keen
  • Publication number: 20160172745
    Abstract: An antenna assembly is for a fuselage of an aircraft and includes a satellite antenna, a radome covering the satellite antenna, and attachment fittings for coupling to the fuselage of the aircraft. The attachment fittings include fore, aft and side attachment fittings. The fore attachment fittings react to vertical, lateral and longitudinal loads. The aft attachment fittings react to vertical and lateral loads and permit longitudinal displacement. Left side and right side attachment fittings react to vertical loads and permit lateral and longitudinal displacement. A fairing mounts the radome to the attachment fittings.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Inventors: R. Michael KEEN, William David McCune, Brian D. Anderson
  • Publication number: 20160172748
    Abstract: An antenna assembly is for a fuselage of an aircraft and includes a first satellite antenna operable in a first frequency range, a second satellite antenna operable in a second frequency range, and a radome covering the first and second satellite antennas. The radome includes, in stacked relation, an inner skin having a quartz fabric and epoxy resin, an inner core having epoxy syntactic foam, a center laminate having quartz fabric and epoxy resin, an outer core having epoxy syntactic foam, and an outer skin having quartz fabric and epoxy resin. A fairing mounts the radome to the fuselage of the aircraft.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 16, 2016
    Inventors: R. Michael Keen, Brian D. Anderson, David Halsey, Kurt Strickler
  • Publication number: 20150128193
    Abstract: An in-flight entertainment (IFE) system for an aircraft includes a phased array antenna and control circuitry associated therewith to be carried by the aircraft and to generate dual antenna beams for television programming and Internet data from respective spaced apart satellites. A television programming distribution system is to be carried by the aircraft and coupled to the phased array antenna and control circuitry to provide television programming within the aircraft. At least one access point is to be carried by the aircraft and coupled to the phased array antenna and control circuitry to provide a wireless local area network (WLAN) within the aircraft for the Internet data.
    Type: Application
    Filed: December 18, 2014
    Publication date: May 7, 2015
    Inventors: Jeffrey A. Frisco, Michael J. Lynch, Brian D. Anderson, R. Michael Keen
  • Patent number: 8917207
    Abstract: An in-flight entertainment (IFE) system for an aircraft includes a phased array antenna and control circuitry associated therewith to be carried by the aircraft and to generate dual antenna beams for television programming and Internet data from respective spaced apart satellites. A television programming distribution system is to be carried by the aircraft and coupled to the phased array antenna and control circuitry to provide television programming within the aircraft. At least one access point is to be carried by the aircraft and coupled to the phased array antenna and control circuitry to provide a wireless local area network (WLAN) within the aircraft for the Internet data.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: December 23, 2014
    Assignee: LiveTV, LLC
    Inventors: Jeffrey A. Frisco, Michael J. Lynch, Brian D. Anderson, Robert M. Keen
  • Publication number: 20140150034
    Abstract: An aircraft in-flight entertainment (IFE) system for an aircraft includes a radome to be carried by the aircraft, and a dual-beam satellite antenna and at least one positioner coupled thereto to be carried by the aircraft and protected by the radome. The dual-beam satellite antenna is to generate dual antenna beams for television programming and Internet data from respective spaced apart satellites. The dual-beam satellite antenna includes a first aperture for receiving the television programming, and a second aperture adjacent the first aperture for receiving the Internet data. A television programming distribution system is to be carried by the aircraft and coupled to the dual-beam satellite antenna to provide television programming within the aircraft. At least one access point is to be carried by the aircraft and coupled to the dual-beam satellite antenna to provide a wireless local area network (WLAN) within the aircraft for the Internet data.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: LIVETV, LLC
    Inventors: JEFFREY A. FRISCO, Michael J. Lynch, Brian D. Anderson, Robert M. Keen
  • Patent number: 8671432
    Abstract: An aircraft in-flight entertainment (IFE) system for an aircraft includes a radome to be carried by the aircraft, and a dual-beam satellite antenna and at least one positioner coupled thereto to be carried by the aircraft and protected by the radome. The dual-beam satellite antenna is to generate dual antenna beams for television programming and Internet data from respective spaced apart satellites. The dual-beam satellite antenna includes a first aperture for receiving the television programming, and a second aperture adjacent the first aperture for receiving the Internet data. A television programming distribution system is to be carried by the aircraft and coupled to the dual-beam satellite antenna to provide television programming within the aircraft. At least one access point is to be carried by the aircraft and coupled to the dual-beam satellite antenna to provide a wireless local area network (WLAN) within the aircraft for the Internet data.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: March 11, 2014
    Assignee: Livetv, LLC
    Inventors: Jeffrey A. Frisco, Michael J. Lynch, Brian D. Anderson, Robert M. Keen
  • Patent number: 8576693
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: November 5, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lee Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8547824
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 1, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lee Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8406115
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 26, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8351321
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to de-modulate symbols from at least one of a plurality of spectrally overlapping carrier signals to produce a receiver output; a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor coupled to the receiver, wherein the processor applies a Fourier transform to the receiver output; and a controller programmed to instruct the transmitter to transmit at least one symbol representing a request for bandwidth allocation on a first carrier; wherein the controller is further programmed to determine when a collision has occurred on the first carrier.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: January 8, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S Russell, Calvin G Nelson, Niranjan R Samant, Joseph F Chiapetta, Scott Sarnikowski
  • Patent number: 8315150
    Abstract: A multipoint-to-point, orthogonal frequency division multiplexed (OFDM) communication system is provided. The system includes a plurality of remote units and a host unit that includes a demodulator. Each of the remote units transmits an upstream OFDM signal using a multiple access scheme to the host unit demodulator using at least one of a plurality of orthogonal tones within an OFDM waveform. The host unit receives the upstream OFDM signals from a plurality of the remote units. Portions of upstream OFDM signals from at least two of the remote units arrive at the host unit at the same time. The host unit demodulator demodulates the portions and the upstream signals from the plurality of remote units arrive at the host unit synchronized in time and frequency within the OFDM waveform.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: November 20, 2012
    Assignee: HTC Corporation
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Patent number: RE43667
    Abstract: Systems for multiple use subchannels are provided. In one embodiment, a bidirectional communication system comprises: a first remote for communicating with a host using orthogonal frequency division multiplexing (OFDM), the host communicatively coupled to a plurality of remotes in a multipoint-to-point configuration; wherein the first remote is configured to transmit up to a plurality of tones modulated with upstream information using OFDM; the first remote including a modulator for modulating the up to a plurality of tones with upstream information using OFDM, wherein the modulator is configured to adjust a carrier frequency of the plurality of tones such that when any tones are transmitted from the first remote and at least one other remote of the plurality of remotes, the orthogonality of the tones when received at the host is improved; and wherein both control data and payload data are transmitted on a first tone of the plurality of tones.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: September 18, 2012
    Assignee: HTC Corporation
    Inventors: Michael J. Geile, James J. Herrmann, Mark S. Wadman, Brian D. Anderson