Patents by Inventor Brian D. Brandt

Brian D. Brandt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200069364
    Abstract: Cardiac tissue ablation catheters including an inflatable and flexible toroidal or spherically shaped balloon disposed at a distal region of an elongate member, a flexible circuit carried by an outer surface of the balloon, the flexible circuit including, a plurality of flexible branches conforming to the radially outer surface of the balloon, each of the plurality of flexible branches including a substrate, a conductive trace carried by the substrate, and an ablation electrode carried by the substrate, the ablation electrode in electrical communication with the conductive trace, and an elongate shaft comprising a guidewire lumen extending in the elongate member and extending from a proximal region of the inflatable balloon to distal region of the inflatable balloon and being disposed within the inflatable balloon, wherein a distal region of the elongate shaft is secured directly or indirectly to the distal region of the inflatable balloon.
    Type: Application
    Filed: April 9, 2019
    Publication date: March 5, 2020
    Inventors: Amr Salahieh, Jonah Lepak, Emma Lepak, Brian D. Brandt, John P. Claude, Tom Saul
  • Patent number: 10531952
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: January 14, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Publication number: 20200000590
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Application
    Filed: August 13, 2019
    Publication date: January 2, 2020
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Patent number: 10478289
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: November 19, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Patent number: 10478300
    Abstract: An elongated member and a method of manufacturing an elongated member may include first, second, and third elongated rod mandrels. The first, second, and third elongated rod mandrels may be fixed together at predetermined proximal and distal locations and at a ball tip. The first, second, and third rod mandrels may be disposed within a tubular coupling element and fixed to the tubular coupling element at the ball tip. The tubular coupling element may be placed into abutment with and fixed to the distal end of an elongated shaft.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: November 19, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Randy S. Gamarra, David S. Tung, Benjamin Sutton, Takashi Ino, Joshua Wallin, Brian D. Brandt
  • Patent number: 10426608
    Abstract: A replacement heart valve assembly including an expandable anchor having a skirt region, a lip region, and a groove region therebetween and a replacement valve disposed within the expandable anchor and engaged with the groove region of the expandable anchor.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: October 1, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Patent number: 10413412
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: September 17, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Patent number: 10413409
    Abstract: The present invention relates to apparatus and methods for endovascularly delivering and releasing a prosthesis, e.g., an aortic prosthesis, within and/or across a patient's native heart valve, referred to hereinafter as replacing the patient's heart valve. In some embodiments the delivery system comprises a plurality of first actuatable element adapted to engage a plurality of second elements in a first configuration to capture the implant within the delivery system, and wherein the plurality of first actuatable element are adapted to engage the plurality of second elements in a second configuration and to release the implant from the delivery system.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 17, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Hans F. Valencia, Brian D. Brandt, Claudio Argento, Ulrich R. Haug, Jean-Pierre Dueri, Daniel K. Hildebrand, Dwight P. Morejohn, Tom Saul
  • Patent number: 10342660
    Abstract: A medical device apparatus may include a medical implant including an anchor member configured to actuate between a delivery configuration and a deployed configuration operatively connected to a delivery system, the delivery system including an outer sheath and an inner catheter disposed within the outer sheath, and a sheathing aid connecting the delivery system to the medical implant, the sheathing aid being configured to guide the medical implant into the outer sheath upon relative closing movement therebetween. The sheathing aid may include a plurality of tethers extending from the inner catheter to a proximal end of the anchor member, and a release mechanism slidably disposed within a coupler ring coupled to a distal end of the inner catheter. The plurality of tethers may be releasably coupled to the release mechanism.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: July 9, 2019
    Assignee: BOSTON SCIENTIFIC INC.
    Inventors: Cornelius M. Crowley, Ali Salahieh, Brian D. Brandt, Andrew J. H. Backus, Thu Pham, Luan Cao, Dwight J. Knab, Jr.
  • Patent number: 10335273
    Abstract: The present invention relates to apparatus for methods for endovascularly replacing a patient's heart valve. The apparatus includes an expandable anchor with leaflet engagement elements on the proximal end of the anchor and a replacement valve. The leaflet engagement elements can be used to prevent distal migration and insure proper positioning of the apparatus.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: July 2, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Robert A. Geshlider, Dwight P. Morejohn, Tom Saul
  • Publication number: 20190152493
    Abstract: A utility vehicle includes a frame and a plurality of ground-engaging members supporting the frame. Each of the plurality of ground-engaging members is configured to rotate about an axle. The utility vehicle further includes a powertrain assembly supported by the frame and a braking system configured to operate in a normal run mode and an anti-lock braking mode. The braking system includes an anti-lock braking control module operably coupled to the plurality of ground-engaging members and configured to automatically engage the anti-lock braking mode in response to a predetermined condition.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 23, 2019
    Applicant: Polaris Industries Inc.
    Inventors: Harry Pongo, Brian E. Brandt, Joshua T. Weed, Agata Kaleta, Jacob J. Minick, Ryan D. Kincade
  • Patent number: 10251700
    Abstract: Cardiac tissue ablation catheters including an inflatable and flexible toroidal or spherically shaped balloon disposed at a distal region of an elongate member, a flexible circuit carried by an outer surface of the balloon, the flexible circuit including, a plurality of flexible branches conforming to the radially outer surface of the balloon, each of the plurality of flexible branches including a substrate, a conductive trace carried by the substrate, and an ablation electrode carried by the substrate, the ablation electrode in electrical communication with the conductive trace, and an elongate shaft comprising a guidewire lumen extending in the elongate member and extending from a proximal region of the inflatable balloon to distal region of the inflatable balloon and being disposed within the inflatable balloon, wherein a distal region of the elongate shaft is secured directly or indirectly to the distal region of the inflatable balloon.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: April 9, 2019
    Assignee: Shifamed Holdings, LLC
    Inventors: Amr Salahieh, Jonah Lepak, Emma Lepak, Brian D. Brandt, John P. Claude, Tom Saul
  • Publication number: 20190053896
    Abstract: A replacement heart valve commissure assembly may include a locking mechanism including a first locking portion spaced apart from a second locking portion in a delivery configuration and configured to engage with the second locking portion in a deployed configuration, wherein the first locking portion is longitudinally actuatable relative to the second locking portion between the delivery and deployed configurations. The commissure assembly may include a first valve leaflet and a second valve leaflet each secured to the first locking portion. A first sleeve portion of the first valve leaflet may be fixedly attached to a first fabric sleeve wrapped around a first leg of the first locking portion by a first filament, and a second sleeve portion of the second valve leaflet may be fixedly attached to a second fabric sleeve wrapped around a second leg of the first locking portion by a second filament.
    Type: Application
    Filed: August 16, 2018
    Publication date: February 21, 2019
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jasper Ellington Adamek-Bowers, Ali Salahieh, Takashi H. Ino, Andrew James Harlan Backus, Anh Thu Pham, Brian D. Brandt, Mimi Trinh Fitterer, Michael P. Calomeni, Jarad S. Waisblatt
  • Patent number: 10206774
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a delivery catheter having a diameter of 21 french or less; an expandable anchor disposed within the delivery catheter; and a replacement valve disposed within the delivery catheter. The invention also includes a method for endovascularly replacing a heart valve of a patient. In some embodiments the method includes the steps of: inserting a catheter having a diameter no more than 21 french into the patient; endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve through the catheter; and deploying the anchor and the replacement valve.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: February 19, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Publication number: 20180214266
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Application
    Filed: January 23, 2018
    Publication date: August 2, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Publication number: 20180206991
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Application
    Filed: March 21, 2018
    Publication date: July 26, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Publication number: 20180125652
    Abstract: The present invention relates to apparatus for methods for endovascularly replacing a patient's heart valve. The apparatus includes an expandable anchor with leaflet engagement elements on the proximal end of the anchor and a replacement valve.
    Type: Application
    Filed: January 8, 2018
    Publication date: May 10, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Robert A. Geshlider, Dwight P. Morejohn, Tom Saul
  • Publication number: 20180116792
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: May 3, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20180116793
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: May 3, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Patent number: 9956075
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: May 1, 2018
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug