Patents by Inventor Brian D. Hemond

Brian D. Hemond has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11120983
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: September 14, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Brian D. Hemond, Harold F. Hemond
  • Publication number: 20200388479
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Application
    Filed: May 18, 2020
    Publication date: December 10, 2020
    Inventors: Ian W. Hunter, Brian D. Hemond, Harold F. Hemond
  • Patent number: 10658169
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: May 19, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Brian D. Hemond, Harold F. Hemond
  • Publication number: 20190214243
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Inventors: Ian W. HUNTER, Brian D. HEMOND, Harold F. HEMOND
  • Patent number: 10326347
    Abstract: A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: June 18, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Andrew J. Taberner, Brian D. Hemond, Dawn M. Wendell, Nora Catherine Hogan, Nathan B. Ball
  • Patent number: 10236172
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: March 19, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Brian D. Hemond, Harold F. Hemond
  • Patent number: 9954384
    Abstract: An energy storage system for use with an external device including: an energy storage cell; a microcontroller; an internal communication bus; an interface including two power terminals and a communications port electrically connected to the internal communication bus; power conversion circuitry for performing a charging operation during which energy is transferred from the power terminals to the energy storage cell and a discharging operation during which energy is transferred from the energy storage cell to the power terminals; and one or more sensors for monitoring one or more parameters of the energy storage cell, wherein it is all packaged to form a single, integrated unit.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 24, 2018
    Assignee: Nucleus Scientific Inc.
    Inventors: Ian W. Hunter, Serge R. Lafontaine, Brian D. Hemond, Adam Wahab
  • Publication number: 20170316928
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Application
    Filed: July 10, 2017
    Publication date: November 2, 2017
    Inventors: Ian W. HUNTER, Brian D. HEMOND, Harold F. HEMOND
  • Patent number: 9761850
    Abstract: A battery assembly including: a plurality of prismatic battery cells; first and second fluid manifolds; and a plurality of corrugated flow plates interleaved with the plurality of battery cells, each the flow plates extending from the first manifold to the second manifold and providing an array of flow channels for carrying fluid from the first manifold to the second manifold, wherein each plate of the plurality of corrugated flow plates is an extruded plastic structure comprising first and second fluid impermeable sheets and a plurality of parallel ribs between and connecting the first and second sheets, said plurality of ribs forming the array of flow channels.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: September 12, 2017
    Assignee: Nucleus Scientific, Inc.
    Inventors: Grant W. Kristofek, Brian D. Hemond, Ian W. Hunter
  • Publication number: 20170065769
    Abstract: A method for injecting a substance through a biological body surface includes providing a needle-free transdermal transport device configured to inject the substance through the surface. The substance is injected into the biological body with the transport device while a parameter of the injection is sensed and a servo-controller is used to dynamically adjust at least one injection characteristic based on the sensed parameter. The substance is injected for (i) a first time period during which a first portion of a volume of the substance is injected at a first injection pressure, and (ii) a second time period during which a remainder of the volume of the substance is injected at a second injection pressure. A viscosity of the substance may be determined, and a pressure calculated for injecting the substance based on the viscosity. The substance may be injected with the transport device by using the calculated pressure.
    Type: Application
    Filed: October 28, 2016
    Publication date: March 9, 2017
    Inventors: Brian D. Hemond, Ian W. Hunter, Andrew J. Taberner, Dawn M. Wendell, N. Catherine Hogan
  • Publication number: 20160336762
    Abstract: An energy storage system for use with an external device including: an energy storage cell; a microcontroller; an internal communication bus; an interface including two power terminals and a communications port electrically connected to the internal communication bus; power conversion circuitry for performing a charging operation during which energy is transferred from the power terminals to the energy storage cell and a discharging operation during which energy is transferred from the energy storage cell to the power terminals; and one or more sensors for monitoring one or more parameters of the energy storage cell, wherein it is all packaged to form a single, integrated unit.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 17, 2016
    Inventors: IAN W. HUNTER, SERGE R. LAFONTAINE, BRIAN D. HEMOND, ADAM WAHAB
  • Publication number: 20160197542
    Abstract: A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.
    Type: Application
    Filed: March 10, 2016
    Publication date: July 7, 2016
    Inventors: Ian W. Hunter, Andrew J. Taberner, Brian D. Hemond, Dawn M. Wendell, Nora Catherine Hogan, Nathan B. Ball
  • Patent number: 9308326
    Abstract: A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: April 12, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Andrew J. Taberner, Brian D. Hemond, Dawn M. Wendell, Nora Catherine Hogan, Nathan B. Ball
  • Patent number: 8992466
    Abstract: A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: March 31, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Andrew J. Taberner, Brian D. Hemond, Dawn M. Wendell, Nora Catherine Hogan, Nathan B. Ball
  • Publication number: 20150005701
    Abstract: A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventors: Ian W. Hunter, Andrew J. Taberner, Brian D. Hemond, Dawn M. Wendell, Nora Catherine Hogan, Nathan B. Ball
  • Publication number: 20140326866
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 6, 2014
    Inventors: Ian W. Hunter, Brian D. Hemond, Harold F. Hemond
  • Publication number: 20140257236
    Abstract: A method for injecting a substance through a biological body surface includes providing a needle-free transdermal transport device configured to inject the substance through the surface. The substance is injected into the biological body with the transport device while a parameter of the injection is sensed and a servo-controller is used to dynamically adjust at least one injection characteristic based on the sensed parameter. The substance is injected for (i) a first time period during which a first portion of a volume of the substance is injected at a first injection pressure, and (ii) a second time period during which a remainder of the volume of the substance is injected at a second injection pressure. A viscosity of the substance may be determined, and a pressure calculated for injecting the substance based on the viscosity. The substance may be injected with the transport device by using the calculated pressure.
    Type: Application
    Filed: May 16, 2014
    Publication date: September 11, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Brian D. Hemond, Ian W. Hunter, Andrew J. Taberner, Dawn M. Wendell, N. Catherine Hogan
  • Patent number: 8754371
    Abstract: A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: June 17, 2014
    Assignee: The Massachusetts Institute of Technology
    Inventors: Ian W. Hunter, Brian D. Hemond, Harold F. Hemond
  • Patent number: 8740838
    Abstract: A method for injecting a substance through a biological body surface includes providing a needle-free transdermal transport device configured to inject the substance through the surface. The substance is injected into the biological body with the transport device while a parameter of the injection is sensed and a servo-controller is used to dynamically adjust at least one injection characteristic based on the sensed parameter. The substance is injected for (i) a first time period during which a first portion of a volume of the substance is injected at a first injection pressure, and (ii) a second time period during which a remainder of the volume of the substance is injected at a second injection pressure. A viscosity of the substance may be determined, and a pressure calculated for injecting the substance based on the viscosity. The substance may be injected with the transport device by using the calculated pressure.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: June 3, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian D. Hemond, Ian W. Hunter, Andrew J. Taberner, Dawn M. Wendell, N. Catherine Hogan
  • Publication number: 20130108902
    Abstract: A battery assembly including: a plurality of prismatic battery cells; first and second fluid manifolds; and a plurality of corrugated flow plates interleaved with the plurality of battery cells, each the flow plates extending from the first manifold to the second manifold and providing an array of flow channels for carrying fluid from the first manifold to the second manifold, wherein each plate of the plurality of corrugated flow plates is an extruded plastic structure comprising first and second fluid impermeable sheets and a plurality of parallel ribs between and connecting the first and second sheets, said plurality of ribs forming the array of flow channels.
    Type: Application
    Filed: April 12, 2012
    Publication date: May 2, 2013
    Inventors: Grant W. KRISTOFEK, Brian D. HEMOND, Ian W. HUNTER