Patents by Inventor Brian D. Homeijer

Brian D. Homeijer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10481672
    Abstract: There is provided a near-zero-power wakeup system in which a MEMS sensor for mechanical or acoustic signals is coupled to a very-low-power complementary metal oxide semiconductor (CMOS) application-specific integrated circuit (ASIC). Power consumption can be minimized by operating the ASIC with sub-threshold gate voltages.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: November 19, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Benjamin Griffin, Robert William Reger, Sean Yen, Bryson Barney, Andrew Ian Young, Travis Ryan Young, Michael Wiwi, Michael David Henry, Brian D. Homeijer
  • Patent number: 10473687
    Abstract: A microelectromechanical systems (MEMS) accelerometer that has high sensitivity to motion along the z axis is discussed. The device includes two symmetrical sets of bilateral, diametrically opposed high aspect ratio flexures that tether a movable proof mass to the frame of the device. The flexures are designed in such a way as to restrict movement of the proof mass along the x and y axes but readily allow motion along the z axis. More specifically, when the device experiences an acceleration along the x or y axes, the proof mass is restricted from moving because some of the bilateral, diametrically opposed flexures are in compression and others are in tension.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: November 12, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Paul J. Resnick, Brian D. Homeijer, Thomas A. Friedmann, Michael Wiwi
  • Patent number: 10139564
    Abstract: The present application relates to vertically integrated assemblies including a MEMS-based optomechanical architecture. In some embodiments, the assembly includes a MEMS/optoelectronic module, an emitter module, and a detector module, where these modules are vertically integrated. Methods of fabricating such assemblies are also described herein.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: November 27, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Brian D. Homeijer, Matt Eichenfield
  • Patent number: 9403671
    Abstract: A micro electromechanical systems (MEMS) sensor is excited. The response of the MEMS sensor is measured. The MEMS sensor is calibrated.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 2, 2016
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Brian D. Homeijer, Robert Newton Bicknell
  • Patent number: 9027402
    Abstract: An acceleration-sensing device having error correction includes a stator having at least one conductor affixed to a surface and a proof mass having a first conductor affixed at a first location relative to the at least one conductor affixed to a surface of the stator. The proof mass includes a second conductor affixed at a second location relative to the at least one conductor affixed to a surface of the stator, wherein an excitation signal applied to the first conductor of the proof mass brings about a force on the proof mass in the plane of motion of the proof mass that is substantially equally opposed by a force resulting from an excitation signal applied to the second conductor of the proof mass in the plane of motion of the proof mass.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: May 12, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Brian D. Homeijer, Robert N. Bicknell
  • Patent number: 8984942
    Abstract: The micro-mechanical device includes a substrate with an internal cavity, a first surface, and an opposing second surface. A first trench is formed from the first surface of the substrate into the internal cavity. The first trench at least partially defines flexures. A second trench is formed from the second surface of the substrate into the internal cavity and at least partially defines a suspended mass. The suspended mass is connected by the flexures to the substrate.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: March 24, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Brian D. Homeijer
  • Patent number: 8776337
    Abstract: The present disclosure includes methods of forming capacitive sensors. One method includes forming a first electrode array of the capacitive sensor on a first structure. Forming the first electrode array can include: forming a dielectric material on a substrate material; forming an electrode material on the dielectric material; removing portions of the electrode material to form a number of electrodes separated from each other; and removing at least a portion of the dielectric material from between the number of electrodes. The method can include bonding the first structure to a second structure having a second electrode array of the capacitive sensor formed thereon such that the number of electrodes of the first electrode array face a number of electrodes of the second electrode array.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: July 15, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Brian D. Homeijer, Robert G. Walmsley, Rodney L. Alley, Dennis M. Lazaroff, Sara J. Homeijer
  • Publication number: 20130205901
    Abstract: The micro-mechanical device includes a substrate with an internal cavity, a first surface, and an opposing second surface. A first trench is formed from the first surface of the substrate into the internal cavity. The first trench at least partially defines flexures. A second trench is formed from the second surface of the substrate into the internal cavity and at least partially defines a suspended mass. The suspended mass is connected by the flexures to the substrate.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Inventor: Brian D. Homeijer
  • Publication number: 20130055813
    Abstract: An accelerometer can include a support structure having situated thereupon a stator electrode array including multiple stator electrodes (e.g., A, B, and C); and a proof mass positioned parallel to the stator electrode array and capable of displacement parallel thereto. A translator electrode array facing the stator electrode array can comprise multiple translator electrodes (e.g., a and b) can be situated on the proof mass. Further included is a drive circuitry to apply drive voltages to six capacitances formed by the stator and translator electrodes. The total force exerted on the proof mass by the drive voltages is held constant at about zero.
    Type: Application
    Filed: May 12, 2010
    Publication date: March 7, 2013
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Robert Newton Bicknell, Brian D. Homeijer
  • Publication number: 20130036789
    Abstract: An acceleration-sensing device having error correction includes a stator having at least one conductor affixed to a surface and a proof mass having a first conductor affixed at a first location relative to the at least one conductor affixed to a surface of the stator. The proof mass includes a second conductor affixed at a second location relative to the at least one conductor affixed to a surface of the stator, wherein an excitation signal applied to the first conductor of the proof mass brings about a force on the proof mass in the plane of motion of the proof mass that is substantially equally opposed by a force resulting from an excitation signal applied to the second conductor of the proof mass in the plane of motion of the proof mass.
    Type: Application
    Filed: April 30, 2010
    Publication date: February 14, 2013
    Inventors: Brian D. Homeijer, Robert N. Bicknell
  • Publication number: 20120025851
    Abstract: The present disclosure includes capacitive sensors and methods of forming capacitive sensors. One capacitive sensor includes a first substrate structure having a first dielectric material formed thereon and electrodes of a first electrode array formed on the first dielectric material. The sensor includes a second substrate structure facing the first substrate structure and having a second dielectric material formed thereon and electrodes of a second electrode array formed on the second dielectric material. The sensor includes a removed portion of the first dielectric material forming a recess between adjacent electrodes of the first electrode array, and the first substrate structure is moveable with respect to the second substrate structure.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Inventors: Brian D. Homeijer, Robert G. Walmsley, Rodney L. Alley, Dennis M. Lazaroff, Sara J. Homeijer