Patents by Inventor Brian D. Mallen

Brian D. Mallen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6435851
    Abstract: A rotary-vane pumping machine has a core structure that includes a stator assembly defining a contoured surface of a stator cavity, a rotor spinning around a rotor shaft axis that is fixed relative to the stator cavity, and end plates disposed on either side of the rotor. The rotor has a plurality of radial vanes slots for housing a corresponding plurality of vanes that slide within the radial vane slot of the rotor. Each of the plurality of vanes has side walls, a tip portion, and a base portion, and the base portion has one or more tabs extending from at least one axial end of the vane. The plurality of vanes, stator cavity, and rotor define a plurality of chamber cells. The core structure is substantially made of low coefficient of thermal expansion Invar materials to achieve precise non-contact sealing clearances between components of the machine.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: August 20, 2002
    Assignee: Mallen Research Ltd., Partnership
    Inventor: Brian D. Mallen
  • Patent number: 6386172
    Abstract: A rotary vane combustion engine is provided that has a plurality of vane cells. This rotary vane combustion engine includes a rotor having a plurality of vanes; a stator enclosing the rotor to form a plurality of vane cells between the plurality of vanes; one or more intake ports for providing intake charge to the vane cells; one or more exhaust ports for removing exhaust gas from one of the vane cells; and a variable bandwidth fuel-air source connected to at least one of the intake ports for providing a discrete band of mixed fuel and air having a desired axial width to each of the plurality of vane cells. By providing a discrete band of fuel and air to each of the vane cells, this rotary vane combustion engine will allow the machine or engine to run at lower power without requiring it to run a vacuum to lower the density of mixed fuel and air. As a result, vacuum pumping losses can be substantially eliminated and the machine or engine can operate more efficiently.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: May 14, 2002
    Assignee: Mallen Research Ltd.
    Inventor: Brian D. Mallen
  • Patent number: 6321713
    Abstract: A rotary vane combustion engine is provided that uses a hot wall combustion insert to provide the heat for combusting a fuel-air charge. The rotary vane combustion engine includes a rotor having a plurality of vanes, a stator enclosing the rotor to form a plurality of vane cells between the plurality of vanes, one or more intake ports for providing intake gas to the vane cells, a fuel source for mixing fuel with the intake gas to form a fuel-air charge having a fuel-to-air equivalence ratio, a hot wall combustion insert with an exposed surface provided on the stator for igniting the fuel-air charge during a combustion cycle and producing an exhaust gas, and one or more exhaust ports for removing the exhaust gas from one of the vane cells. The hot wall combustion insert provides the heat to combust the fuel-air charge, and operates on the gas over a wide area, rather than only at a point or a given line of contact.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: November 27, 2001
    Assignee: Mallen Research Corporation
    Inventor: Brian D. Mallen
  • Publication number: 20010014294
    Abstract: A rotary-vane pumping machine has a core structure that includes a stator assembly defining a contoured surface of a stator cavity, a rotor spinning around a rotor shaft axis that is fixed relative to the stator cavity, and end plates disposed on either side of the rotor. The rotor has a plurality of radial vanes slots for housing a corresponding plurality of vanes that slide within the radial vane slot of the rotor. Each of the plurality of vanes has side walls, a tip portion, and a base portion, and the base portion has one or more tabs extending from at least one axial end of the vane. The plurality of vanes, stator cavity, and rotor define a plurality of chamber cells. The core structure is substantially made of low coefficient of thermal expansion Invar materials to achieve precise non-contact sealing clearances between components of the machine.
    Type: Application
    Filed: December 18, 2000
    Publication date: August 16, 2001
    Inventor: Brian D. Mallen
  • Patent number: 6244240
    Abstract: A rotary vane pumping machine includes a stator and rotor in relative rotation. The rotor has a plurality of radial vanes slots and each one of a corresponding plurality of vanes slides within a radial vane slot of the rotor. Each pair of adjacent vanes defines a vane cell. A rotary scavenging disk is disposed along the stator circumference, and is sized such that the rotary scavenging disk extends into the vane cell. An outer circumferential edge of the rotary scavenging disk is in sealing proximity with an outer circumferential edge of the rotor and recesses within the rotary scavenging disk mesh and seal with the extending and retracting vanes.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: June 12, 2001
    Assignee: Mallen Research Limited Partnership
    Inventor: Brian D. Mallen
  • Patent number: 6241497
    Abstract: A rotor and stator cooling system for a rotary vane pumping machine having two end plates, a stator assembly, and a rotor. A rotor cooling gas supplied at a cooling gas supply channel in an end plate passes from a radial inner location, along a rotor face chamber of the rotor in an outward radial direction, and then toward a plurality of rotor gas channels in the rotor. The rotor cooling gas absorbs heat from the rotor and then exits through a heated gas exit channel in another endplate. A stator cooling fluid entering at a cooling fluid port in one end plate passes through stator fluid channels of the stator assembly, absorbs heat therein, and exits at another fluid port in the other endplate.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: June 5, 2001
    Assignee: Mallen Research Limited Partnership
    Inventor: Brian D. Mallen
  • Patent number: 6162034
    Abstract: A rotary vane pumping machine have a core structure and peripheral components interfacing with the core structure. The core structure includes a stator assembly defining a contoured surface of a stator cavity, a rotor spinning around a rotor shaft axis that is fixed relative to the stator cavity, and end plates disposed on either side of the rotor. The rotor has a plurality of radial vanes slots for housing a corresponding plurality of vanes that slide within the radial vane slot of the rotor. The plurality of vanes, stator cavity and rotor define a plurality of chamber cells. The core structure is substantially made of low coefficient of thermal expansion Invar materials to achieve precise non-contact sealing clearances between components of the machine.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: December 19, 2000
    Assignee: Mallen Research Ltd., Partnership
    Inventor: Brian D. Mallen
  • Patent number: 6120273
    Abstract: A rotary vane pumping machine having a rotary-linear vane guidance structure, including a translation ring disposed at each axial end of the pumping machine, the translation ring rotating around a fixed hub, with the fixed hub being eccentric to a rotor shaft axis, with the rotor spinning around the rotor shaft axis which is a fixed rotational axis relative to a stator cavity. A plurality of vanes are disposed in a corresponding plurality of vane slots in the rotor, each of the vanes having a tip portion and a base portion, with the base portion having a protruding tab extending from each axial end therefrom. A plurality of linear channels are formed in each translation ring, wherein the protruding tabs extending from the base portion of each of the plurality of vanes communicate with a respective linear channel in the translation ring, whereby the rotor rotation causes rotation of the vanes and a corresponding rotation of the translation ring.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: September 19, 2000
    Assignee: Mallen Research Corporation
    Inventor: Brian D. Mallen
  • Patent number: 6120271
    Abstract: A vane slot assembly and installation method for a rotary vane pumping machine including a rotor with a rotor axis of rotation. The rotor has a vane slot with two opposing, azimuthally separated, slot side walls. The rotor has a primary slot gear rack disposed radially along a first slot side wall. A radially reciprocating vane is movably disposed between the slot side walls. The vane has side walls facing the slot side walls, and has a primary vane gear rack disposed radially along a first vane side wall facing the first slot side wall. A plurality of vane slot rollers are movably disposed between the first slot side wall and the first vane side wall. The rollers have axes of rotation substantially parallel to the rotor axis and include an aligned roller having a primary roller gear. The primary roller gear engages the primary vane gear rack and the primary slot gear rack. As a result, friction-reducing roller bearings between the vane and the rotor slot are properly aligned radially.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: September 19, 2000
    Assignee: Mallen Research Corporation
    Inventor: Brian D. Mallen
  • Patent number: 6086346
    Abstract: A rotor and stator cooling system for a rotary vane pumping machine having two end plates, a stator assembly, and a rotor. A rotor cooling gas supplied at a cooling gas supply channel in an end plate passes from a radial inner location, along a rotor face chamber of the rotor in an outward radial direction, and then toward a plurality of rotor gas channels in the rotor. The rotor cooling gas absorbs heat from the rotor and then exits through a heated gas exit channel in another endplate. A stator cooling fluid entering at a cooling fluid port in one end plate passes through stator fluid channels of the stator assembly, absorbs heat therein, and exits at another fluid port in the other endplate.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: July 11, 2000
    Assignee: Mallen Research Corporation
    Inventor: Brian D. Mallen
  • Patent number: 6036462
    Abstract: A rotary vane machine having a rotary-linear vane guidance structure, including a translation ring disposed at each axial end of the machine, the translation ring rotating around a fixed hub, with the fixed hub being eccentric to a rotor shaft axis, with the rotor spinning around the rotor shaft axis which is a fixed rotational axis relative to a stator cavity. A plurality of vanes are disposed in a corresponding plurality of vane slots in the rotor, each of the vanes having a tip portion and a base portion, with the base portion having a protruding tab extending from each axial end therefrom. A plurality of linear channels are formed in each translation ring, wherein the protruding tabs extending from the base portion of each of the plurality of vanes communicate with a respective linear channel in the translation ring, whereby the rotor rotation causes rotation of the vanes and a corresponding rotation of the translation ring.
    Type: Grant
    Filed: July 2, 1997
    Date of Patent: March 14, 2000
    Assignee: Mallen Research Ltd. Partnership
    Inventor: Brian D. Mallen
  • Patent number: 5979395
    Abstract: A method for reducing the exhaust pollution emissions in a two-stroke sliding vane internal combustion engine. First, fresh air is inducted into a vane cell, and fuel is injected into the cell at an ultra-lean fuel-air equivalence ratio less than about 0.65. The fuel is injected at a location such that a circumferential distance at mid-cell-height to the stator site at the onset of combustion is at least about 4 times a vane cell height at intake. The ultra-lean fuel-air combination is then compressed and thoroughly premixed prior to combustion to a dimensionless concentration fluctuation fraction below about 0.25. The ultra-lean, thoroughly premixed fuel-air combination is then combusted. The combusted fuel-air combination is purged after an expansion cycle. The premixing step prior to combustion may use inclined airfoils within the intake duct to produce counter-rotating mixing vortices.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: November 9, 1999
    Assignee: Mallen Research Ltd. Partnership
    Inventors: Brian D. Mallen, Robert E. Breidenthal, Jr.
  • Patent number: 5836282
    Abstract: A method for reducing the exhaust pollution emissions in a two-stroke sliding vane internal combustion engine. First, fresh air is inducted into a vane cell, and fuel is injected into the cell at an ultra-lean fuel-air equivalence ratio less than about 0.65. The fuel is injected at a location such that a circumferential distance at mid-cell-height to the stator site at the onset of combustion is at least about 4 times a vane cell height at intake. The ultra-lean fuel-air combination is then compressed and thoroughly premixed prior to combustion to a dimensionless concentration fluctuation fraction below about 0.25. The ultra-lean, thoroughly premixed fuel-air combination is then combusted. The combusted fuel-air combination is purged after an expansion cycle. The premixing step prior to combustion may use inclined airfoils within the intake duct to produce counter-rotating mixing vortices.
    Type: Grant
    Filed: December 27, 1996
    Date of Patent: November 17, 1998
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Brian D. Mallen
  • Patent number: 5727517
    Abstract: A sliding vane internal combustion engine that provides one or more expansion gas ducts directing pressurized gases from expansion volumes of the vane engine into an intake charge so as to increase the intake charge density. One or more intercoolers may be coupled to the expansion gas ducts to cool the pressurized gases flowing into the intake region. One or more bypass passages may also be provided to direct the pressurized gas flow around the corresponding intercooler. One or more flow control valves may be provided to control the rate of the pressurized gas flow into the intake region.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: March 17, 1998
    Inventor: Brian D. Mallen
  • Patent number: 5524587
    Abstract: A sliding vane engine, where the vanes slide with at least of one of an axial and radial component of vane motion, and where the compression ratio of the engine may be variably controlled. The engine includes a stator and a rotor in relative rotation, and a plurality of vanes in rotor slits defining one or more main chamber cells and one or more vane slit cells. The vanes contain extended pins that move in a pin channel for controlling the sliding motion of the vane. Fuel is mixed by incorporating air turbulence generators at or near the intake region. The intake and exhaust regions of the engine also incorporate a wave pumping mechanism for injecting and scavenging air from the main chamber cells and the vane slits. The compression ratio of the engine may be varied while the engine is in operation, and the engine geometry provides for an extended temporal duration at about peak compression. The engine is insulated by using segmented ceramic inserts on the stator and rotor surfaces.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: June 11, 1996
    Assignee: Mallen Research Ltd. Partnership
    Inventors: Brian D. Mallen, Jakob J. Keller, Robert E. Breidenthal, Jr.
  • Patent number: 5524586
    Abstract: A method for reducing the exhaust pollution emissions in a sliding vane internal combustion engine. First, an ultra-lean fuel-air combination is thoroughly premixed, the fuel-air combination having an equivalence ratio less than about 0.60 and a dimensionless concentration fluctuation fraction below about 0.33. After being premixed, the ultra-lean fuel-air combination is inducted into a vane cell, compressed, and it is then combusted at a peak compression plateau. The combusted fuel-air combination is purged after an expansion cycle. The combusting of the fuel-air combination may be initiated by autoignition.
    Type: Grant
    Filed: July 19, 1995
    Date of Patent: June 11, 1996
    Assignee: Mallen Research Ltd. Partnership
    Inventor: Brian D. Mallen
  • Patent number: 5474043
    Abstract: An internal combustion engine has a ring-shaped stator with a plurality of thin slits. A rotor, having a plurality of helicotoroidal troughs formed on its inner surface, encloses the stator. A planar vane wheel, having a plurality of radially extending vanes, is resident in each of the thin slits, with the vanes communicating with the respective helicotoroidal troughs. Rotation of the rotor imparts rotation to the vane wheels. The interaction of the stator, troughs, and vanes produces a plurality of sequential intake, compression, combustion, expansion, and exhaust chambers.
    Type: Grant
    Filed: June 17, 1994
    Date of Patent: December 12, 1995
    Assignee: Mallen Research Ltd. Partnership
    Inventor: Brian D. Mallen