Patents by Inventor Brian Daniel Kernan

Brian Daniel Kernan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190388966
    Abstract: An additive manufacturing method including depositing a first amount of metal powder on a print bed, the first amount metal powder forming a first layer, depositing a first binder component to the first layer in a first region, and depositing a second binder component to the first layer in a second region.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 26, 2019
    Applicant: Desktop Metal, Inc.
    Inventors: Michael Andrew GIBSON, Charles Edward MARTIN, Brian Daniel KERNAN, Robert Michael SHYDO, JR.
  • Publication number: 20190375014
    Abstract: The present invention relates to a shrinking interface composition that allows for the accommodation of sintering shrinkage between two or more areas or sections of a three-dimensionally printed part and/or support structures for the part. The interface composition, which can be in the form of an interface layer, is used to prevent the fusing of the sections, parts or support structures to each other.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 12, 2019
    Inventors: Brian Daniel Kernan, Michael Andrew Gibson, Alexander C. Barbati
  • Publication number: 20190111480
    Abstract: Devices, systems, and methods are directed to binder jetting for forming three-dimensional parts having controlled, macroscopically inhomogeneous material composition. In general, a binder may be delivered to each layer of a plurality of layers of a powder of inorganic particles. An active component may be introduced, in a spatially controlled distribution, to at least one of the plurality of layers such that the binder, the powder of inorganic particles, and the active component, in combination, form an object. The object may be thermally processed into a three-dimensional part having a gradient of one or more physicochemical properties of a material at least partially formed from thermally processing the inorganic particles and the active component of the object.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 18, 2019
    Inventors: Alexander C. Barbati, Michael Andrew Gibson, Nihan Tuncer, Brian Daniel Kernan
  • Publication number: 20180305266
    Abstract: An infiltratable material forms a net shape containing a porous network that can be infiltrated with a supplemental material, commonly referred to as an infiltrant, e.g., by heating the infiltrant so that it melts and wicks into the porous network of the net shape. By using additive fabrication technologies to spatially dispose an infiltrant about an infiltratable structure, a composite structure can be created that advantageously controls the amount of infiltrant applied to the infiltratable structure and the spatial distribution of the infiltrant about and/or within the infiltratable structure prior to infiltration.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 25, 2018
    Inventors: Michael Andrew Gibson, Brian Daniel Kernan, Nihan Tuncer, Richard Remo Fontana
  • Publication number: 20180236544
    Abstract: Devices, systems, and methods are directed to the use of nanoparticles for improving fabrication of three-dimensional objects formed through layer-by-layer delivery of an ink onto a powder of metal particles in a powder bed. More specifically, the ink may include nanoparticles of an inorganic material (e.g., a metal) that undergoes at least one phase change as the three-dimensional objects are heated. This phase change may facilitate achieving more uniform distribution of the inorganic material relative to the metal particles in the three-dimensional objects which, in turn, may improve strength of the three-dimensional objects being fabricated. Further, or instead, improved distribution of the inorganic material may reduce the likelihood of defects associated with subsequent processing of the three-dimensional objects.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 23, 2018
    Inventors: Ellen Elizabeth Benn, Brian Daniel Kernan, Christopher Anthony Craven, Michael Andrew Gibson, Michael J. Tarkanian
  • Publication number: 20180236539
    Abstract: Devices, systems, and methods are directed to the use of nanoparticles for improving fabrication of three-dimensional objects formed through layer-by-layer delivery of an ink onto a powder of metal particles in a powder bed. More specifically, the ink may include ceramic nanoparticles that may be maintained in a stable form, providing a shelf-life suitable for transportation and storage of the ink in large-scale commercial operations. The ink may be delivered onto the powder of the metal particles in the powder bed, where the ceramic nanoparticles may interact with the metal particles to improve strength of the three-dimensional objects being fabricated. Also, or instead, the nanoparticles may reduce the likelihood of defects associated with subsequent processing of the three-dimensional objects (e.g., slumping and shrinking and/or inadequate densification of the final part).
    Type: Application
    Filed: February 21, 2018
    Publication date: August 23, 2018
    Inventors: Brian Daniel Kernan, Michael Andrew Gibson, Emanuel Michael Sachs
  • Publication number: 20180236542
    Abstract: Devices, systems, and methods are directed to the use of nanoparticles for improving fabrication of three-dimensional objects formed through layer-by-layer delivery of an ink onto a powder of metal particles in a powder bed. More specifically, the ink may include high aspect ratio nanoparticles, such as filaments. As compared to nanoparticles having lower aspect ratios, high aspect ratio nanoparticles may facilitate bridging more surface of the metal particles in the powder bed. As the three-dimensional objects including the high aspect ratio nanoparticles and the metal particles are thermally processed, the increased bridging associated with the high aspect ratio nanoparticles may result in increased bonded area between the nanoparticles and the metal particles and, thus, three-dimensional objects that are more robust with respect to subsequent processing required to form the three-dimensional objects into finished parts.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 23, 2018
    Inventors: Brian Daniel Kernan, Emanuel Michael Sachs, Michael Andrew Gibson
  • Publication number: 20170297111
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart, Jay Collin Tobia, Nihan Tuncer, Brian Daniel Kernan, Tomek Andrzej Brzezinski