Patents by Inventor Brian Dooley

Brian Dooley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10364367
    Abstract: An example of a non-Newtonian inkjet ink includes first and second metal oxide nanoparticles, a colorant, an organic solvent, and a balance of water. The first metal oxide nanoparticle has a particle size of 10 nm or less, and is present in an amount ranging from about 5% to about 15% by weight based on a total weight of the ink. The second metal oxide nanoparticle has at least one dimension greater than 10 nm, and is present in an amount ranging from 0.25% to 10% by weight based on the total weight of the ink. The colorant is present in an amount ranging from about 0.5% to about 10% by weight based on the total weight of the ink. The organic solvent is present in an amount ranging from about 5% to about 50% by weight based on the total weight of the ink.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: July 30, 2019
    Assignee: Hewett-Packard Development Company, L.P.
    Inventors: Raymond Adamic, Brian Dooley
  • Publication number: 20180118964
    Abstract: An example of a non-Newtonian inkjet ink includes first and second metal oxide nanoparticles, a colorant, an organic solvent, and a balance of water. The first metal oxide nanoparticle has a particle size of 10 nm or less, and is present in an amount ranging from about 5% to about 15% by weight based on a total weight of the ink. The second metal oxide nanoparticle has at least one dimension greater than 10 nm, and is present in an amount ranging from 0.25% to 10% by weight based on the total weight of the ink. The colorant is present in an amount ranging from about 0.5% to about 10% by weight based on the total weight of the ink. The organic solvent is present in an amount ranging from about 5% to about 50% by weight based on the total weight of the ink.
    Type: Application
    Filed: July 24, 2015
    Publication date: May 3, 2018
    Inventors: Raymond Adamic, Brian Dooley
  • Patent number: 9228132
    Abstract: In the processes for treating municipal sewage and storm water containing biosolids to discharge standards, biosolids, even after dewatering, contain typically about 80% water bound in the dead cells of the biosolids, which gives biosolids a negative heating value. It can be incinerated only at the expense of purchased fuel. Biosolids are heated to a temperature at which their cell structure is destroyed and, preferably, at which carbon dioxide is split off to lower the oxygen content of the biosolids. The resulting char is not hydrophilic, and it can be efficiently dewatered and/or dried and is a viable renewable fuel. This renewable fuel can be supplemented by also charging conventional biomass (yard and crop waste, etc.) in the same or in parallel facilities. Similarly, non-renewable hydrophilic fuels can be so processed in conjunction with the processing of biosolids to further augment the energy supply.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: January 5, 2016
    Assignee: SGC Advisors, LLC
    Inventors: Norman L. Dickinson, Kevin M. Bolin, Brian Dooley
  • Patent number: 8409303
    Abstract: In the processes for treating municipal sewage and storm water containing biosolids to discharge standards, biosolids, even after dewatering, contain typically about 80% water bound in the dead cells of the biosolids, which gives biosolids a negative heating value. It can be incinerated only at the expense of purchased fuel. Biosolids are heated to a temperature at which their cell structure is destroyed and, preferably, at which carbon dioxide is split off to lower the oxygen content of the biosolids. The resulting char is not hydrophilic, and it can be efficiently dewatered and/or dried and is a viable renewable fuel. This renewable fuel can be supplemented by also charging conventional biomass (yard and crop waste, etc.) in the same or in parallel facilities. Similarly, non-renewable hydrophilic fuels can be so processed in conjunction with the processing of biosolids to further augment the energy supply.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: April 2, 2013
    Assignee: SGC Advisors, LLC
    Inventors: Norman L. Dickinson, Kevin M. Bolin, Edward Overstreet, Brian Dooley
  • Publication number: 20110192074
    Abstract: In the processes for treating municipal sewage and storm water containing biosolids to discharge standards, biosolids, even after dewatering, contain typically about 80% water bound in the dead cells of the biosolids, which gives biosolids a negative heating value. It can be incinerated only at the expense of purchased fuel. Biosolids are heated to a temperature at which their cell structure is destroyed and, preferably, at which carbon dioxide is split off to lower the oxygen content of the biosolids. The resulting char is not hydrophilic, and it can be efficiently dewatered and/or dried and is a viable renewable fuel. This renewable fuel can be supplemented by also charging conventional biomass (yard and crop waste, etc.) in the same or in parallel facilities. Similarly, non-renewable hydrophilic fuels can be so processed in conjunction with the processing of biosolids to further augment the energy supply.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 11, 2011
    Applicant: ENERTECH ENVIRONMENTAL, INC.
    Inventors: Norman L. Dickinson, Kevin M. Bolin, Edward Overstreet, Brian Dooley
  • Patent number: 7909895
    Abstract: In the processes for treating municipal sewage and storm water containing biosolids to discharge standards, biosolids, even after dewatering, contain typically about 80% water bound in the dead cells of the biosolids, which gives biosolids a negative heating value. It can be incinerated only at the expense of purchased fuel. Biosolids are heated to a temperature at which their cell structure is destroyed and, preferably, at which carbon dioxide is split off to lower the oxygen content of the biosolids. The resulting char is not hydrophilic, and it can be efficiently dewatered and/or dried and is a viable renewable fuel. This renewable fuel can be supplemented by also charging conventional biomass (yard and crop waste, etc.) in the same or in parallel facilities. Similarly, non-renewable hydrophilic fuels can be so processed in conjunction with the processing of biosolids to further augment the energy supply.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: March 22, 2011
    Assignee: EnerTech Environmental, Inc.
    Inventors: Norman L. Dickinson, Kevin M. Bolin, Edward Overstreet, Brian Dooley
  • Publication number: 20060096163
    Abstract: In the processes for treating municipal sewage and storm water containing biosolids to discharge standards, biosolids, even after dewatering, contain typically about 80% water bound in the dead cells of the biosolids, which gives biosolids a negative heating value. It can be incinerated only at the expense of purchased fuel. Biosolids are heated to a temperature at which their cell structure is destroyed and, preferably, at which carbon dioxide is split off to lower the oxygen content of the biosolids. The resulting char is not hydrophilic, and it can be efficiently dewatered and/or dried and is a viable renewable fuel. This renewable fuel can be supplemented by also charging conventional biomass (yard and crop waste, etc.) in the same or in parallel facilities. Similarly, non-renewable hydrophilic fuels can be so processed in conjunction with the processing of biosolids to further augment the energy supply.
    Type: Application
    Filed: November 7, 2005
    Publication date: May 11, 2006
    Applicant: EnerTech Environmental, Inc.
    Inventors: Norman Dickinson, Kevin Bolin, Edward Overstreet, Brian Dooley