Patents by Inventor Brian E. Goodlin

Brian E. Goodlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11616011
    Abstract: An integrated circuit (IC) includes a semiconductor surface layer of a substrate including circuitry formed in the semiconductor surface layer configured together with a Metal-Insulator-Metal (MIM) capacitor. A multi-layer metal stack on the semiconductor surface layer includes a bottom plate contact metal layer including a bottom capacitor plate contact. A first interlevel dielectric (ILD) layer is over the bottom plate contact metal layer. The MIM capacitor includes a trench in the first ILD layer over the bottom capacitor plate contact, wherein the trench is lined by a bottom capacitor plate with a capacitor dielectric layer thereon, and a top capacitor plate on the capacitor dielectric layer. A fill material fills the trench to form a filled trench. A second ILD layer is over the filled trench. A filled via through the second ILD layer provides a connection to the top capacitor plate.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: March 28, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Mona M. Eissa, Umamaheswari Aghoram, Pushpa Mahalingam, Erich Wesley Kinder, Bhaskar Srinivasan, Brian E. Goodlin
  • Patent number: 11498831
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 15, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Publication number: 20210327802
    Abstract: An integrated circuit (IC) includes a semiconductor surface layer of a substrate including circuitry formed in the semiconductor surface layer configured together with a Metal-Insulator-Metal (MIM) capacitor. A multi-layer metal stack on the semiconductor surface layer includes a bottom plate contact metal layer including a bottom capacitor plate contact. A first interlevel dielectric (ILD) layer is over the bottom plate contact metal layer. The MIM capacitor includes a trench in the first ILD layer over the bottom capacitor plate contact, wherein the trench is lined by a bottom capacitor plate with a capacitor dielectric layer thereon, and a top capacitor plate on the capacitor dielectric layer. A fill material fills the trench to form a filled trench. A second ILD layer is over the filled trench. A filled via through the second ILD layer provides a connection to the top capacitor plate.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Inventors: Mona M. Eissa, Umamaheswari Aghoram, Pushpa Mahalingam, Erich Wesley Kinder, Bhaskar Srinivasan, Brian E. Goodlin
  • Patent number: 11075157
    Abstract: An integrated circuit (IC) includes a semiconductor surface layer of a substrate including circuitry formed in the semiconductor surface layer configured together with a Metal-Insulator-Metal (MIM) capacitor. A multi-layer metal stack on the semiconductor surface layer includes a bottom plate contact metal layer including a bottom capacitor plate contact. A first interlevel dielectric (ILD) layer is over the bottom plate contact metal layer. The MIM capacitor includes a trench in the first ILD layer over the bottom capacitor plate contact, wherein the trench is lined by a bottom capacitor plate with a capacitor dielectric layer thereon, and a top capacitor plate on the capacitor dielectric layer. A fill material fills the trench to form a filled trench. A second ILD layer is over including the filled trench. A filled via through the second ILD layer provides a contact to a top plate contact on the top capacitor plate.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: July 27, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mona M. Eissa, Umamaheswari Aghoram, Pushpa Mahalingam, Erich Wesley Kinder, Bhaskar Srinivasan, Brian E. Goodlin
  • Publication number: 20210074630
    Abstract: An integrated circuit (IC) includes a semiconductor surface layer of a substrate including circuitry formed in the semiconductor surface layer configured together with a Metal-Insulator-Metal (MIM) capacitor. A multi-layer metal stack on the semiconductor surface layer includes a bottom plate contact metal layer including a bottom capacitor plate contact. A first interlevel dielectric (ILD) layer is over the bottom plate contact metal layer. The MIM capacitor includes a trench in the first ILD layer over the bottom capacitor plate contact, wherein the trench is lined by a bottom capacitor plate with a capacitor dielectric layer thereon, and a top capacitor plate on the capacitor dielectric layer. A fill material fills the trench to form a filled trench. A second ILD layer is over including the filled trench. A filled via through the second ILD layer provides a contact to a top plate contact on the top capacitor plate.
    Type: Application
    Filed: September 9, 2019
    Publication date: March 11, 2021
    Inventors: Mona M. Eissa, Umamaheswari Aghoram, Pushpa Mahalingam, Erich Wesley Kinder, Bhaskar Srinivasan, Brian E. Goodlin
  • Patent number: 10840179
    Abstract: An electronic device comprises: a molybdenum layer; a bond pad formed on the molybdenum layer, the bond pad comprising aluminum; and a wire bonded to the bond pad, the wire comprising gold.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: November 17, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ricky Alan Jackson, Ting-Ta Yen, Brian E. Goodlin
  • Publication number: 20200354214
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Patent number: 10723616
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: July 28, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Patent number: 10570006
    Abstract: A MEMS IR sensor, with a cavity in a substrate underlapping an overlying layer and a temperature sensing component disposed in the overlying layer over the cavity, may be formed by forming an IR-absorbing sealing layer on the overlying layer so as to cover access holes to the cavity. The sealing layer is may include a photosensitive material, and the sealing layer may be patterned using a photolithographic process to form an IR-absorbing seal. Alternately, the sealing layer may be patterned using a mask and etch process to form the IR-absorbing seal.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: February 25, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ricky Alan Jackson, Walter Baker Meinel, Kalin Valeriev Lazarov, Brian E. Goodlin
  • Patent number: 10526198
    Abstract: A MEMS IR sensor, with a cavity in a substrate underlapping an overlying layer and a temperature sensing component disposed in the overlying layer over the cavity, may be formed by forming an IR-absorbing sealing layer on the overlying layer so as to cover access holes to the cavity. The sealing layer is may include a photosensitive material, and the sealing layer may be patterned using a photolithographic process to form an IR-absorbing seal. Alternately, the sealing layer may be patterned using a mask and etch process to form the IR-absorbing seal.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: January 7, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ricky Alan Jackson, Walter Baker Meinel, Kalin Valeriev Lazarov, Brian E. Goodlin
  • Publication number: 20190206785
    Abstract: An electronic device comprises: a molybdenum layer; a bond pad formed on the molybdenum layer, the bond pad comprising aluminum; and a wire bonded to the bond pad, the wire comprising gold.
    Type: Application
    Filed: February 19, 2018
    Publication date: July 4, 2019
    Inventors: Ricky Alan JACKSON, Ting-TA YEN, Brian E. GOODLIN
  • Publication number: 20190169019
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Patent number: 10233074
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: March 19, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Patent number: 10009001
    Abstract: Method of forming a termination angle in a titanium tungsten layer include providing a titanium tungsten layer and applying a photo resist material to the titanium tungsten layer. The photo resist material is exposed under a defocus condition to generate a resist mask, wherein an edge of the exposed photo resist material corresponds to the sloped termination. The titanium tungsten layer is etched with an etching material, wherein the etching material at least partially etches the photo resist material exposed under the defocused condition, and wherein the etching results in the sloped termination in the titanium tungsten layer.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: June 26, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Neng Jiang, Maciej Blasiak, Nicholas S. Dellas, Brian E. Goodlin
  • Publication number: 20180127266
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Application
    Filed: January 10, 2018
    Publication date: May 10, 2018
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Patent number: 9896330
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: February 20, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Publication number: 20170197823
    Abstract: A packaged micro-electro-mechanical system (MEMS) device (100) comprises a circuitry chip (101) attached to the pad (110) of a substrate with leads (111), and a MEMS (150) vertically attached to the chip surface by a layer (140) of low modulus silicone compound. On the chip surface, the MEMS device is surrounded by a polyimide ring (130) with a surface phobic to silicone compounds. A dome-shaped glob (160) of cured low modulus silicone material covers the MEMS and the MEMS terminal bonding wire spans (180); the glob is restricted to the chip surface area inside the polyimide ring and has a surface non-adhesive to epoxy-based molding compounds. A package (190) of polymeric molding compound encapsulates the vertical assembly of the glob embedding the MEMS, the circuitry chip, and portions of the substrate; the molding compound is non-adhering to the glob surface yet adhering to all other surfaces.
    Type: Application
    Filed: April 21, 2016
    Publication date: July 13, 2017
    Inventors: Kurt Peter Wachtler, Makoto Yoshino, Ayumu Kuroda, Brian E. Goodlin, Karen Kirmse, Benjamin Cook, Genki Yano, Stuart Jacobsen
  • Publication number: 20170174505
    Abstract: A MEMS IR sensor, with a cavity in a substrate underlapping an overlying layer and a temperature sensing component disposed in the overlying layer over the cavity, may be formed by forming an IR-absorbing sealing layer on the overlying layer so as to cover access holes to the cavity. The sealing layer is may include a photosensitive material, and the sealing layer may be patterned using a photolithographic process to form an IR-absorbing seal. Alternately, the sealing layer may be patterned using a mask and etch process to form the IR-absorbing seal.
    Type: Application
    Filed: March 2, 2017
    Publication date: June 22, 2017
    Inventors: Ricky Alan JACKSON, Walter Baker MEINEL, Kalin Valeriev LAZAROV, Brian E. GOODLIN
  • Publication number: 20170178916
    Abstract: A cavity is formed in a semiconductor substrate wherein the width of the cavity is greater than the depth of the cavity and wherein the depth of the cavity is non uniform across the width of the cavity. The cavity may be formed under an electronic device in the semiconductor substrate. The cavity is formed in the substrate by performing a first cavity etch followed by repeated cycles of polymer deposition, cavity etch, and polymer removal.
    Type: Application
    Filed: February 10, 2017
    Publication date: June 22, 2017
    Inventors: Brian E. Goodlin, Karen H. R. Kirmse, Iqbal R. Saraf
  • Patent number: 9607847
    Abstract: A cavity is formed in a semiconductor substrate wherein the width of the cavity is greater than the depth of the cavity and wherein the depth of the cavity is non uniform across the width of the cavity. The cavity may be formed under an electronic device in the semiconductor substrate. The cavity is formed in the substrate by performing a first cavity etch followed by repeated cycles of polymer deposition, cavity etch, and polymer removal.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Brian E. Goodlin, Karen H. R. Kirmse, Iqbal R. Saraf