Patents by Inventor Brian E. Weiner

Brian E. Weiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117374
    Abstract: Pesticidal proteins are provided that combine two or more modes of action into a single molecule. These pesticidal proteins therefor exhibit greater efficacy and/or durability of resistance, for the purposes of pest control, and can be utilized for pest control by provision in the diet of a pest organism, or by topical application to crop plants and/or pests. Methods and compositions for producing and using such proteins are also provided.
    Type: Application
    Filed: October 30, 2023
    Publication date: April 11, 2024
    Inventors: Timothy K. Ball, Artem G. Evdokimov, Larry A. Gilbertson, Victor M. Guzov, Jeffrey A. Haas, Qing Huai, Sergey Ivashuta, Melissa M. Kemp, Yifei Kong, Thomas M. Malvar, Byron V. Olsen, Parthasarathy Ramaseshadri, Brian E. Weiner
  • Patent number: 11840700
    Abstract: Pesticidal proteins are provided that combine two or more modes of action into a single molecule. These pesticidal proteins therefor exhibit greater efficacy and/or durability of resistance, for the purposes of pest control, and can be utilized for pest control by provision in the diet of a pest organism, or by topical application to crop plants and/or pests. Methods and compositions for producing and using such proteins are also provided.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: December 12, 2023
    Assignee: Monsanto Technology LLC
    Inventors: Timothy K. Ball, Artem G. Evdokimov, Larry A. Gilbertson, Victor M. Guzov, Jeffrey A. Haas, Qing Huai, Sergey Ivashuta, Melissa M. Kemp, Yifei Kong, Thomas M. Malvar, Byron V. Olsen, Parthasarathy Ramaseshadri, Brian E. Weiner
  • Patent number: 11825850
    Abstract: Pesticidal proteins exhibiting toxic activity against Lepidopteran pest species are disclosed, and include, but are not limited to, TIC4029, TIC4029_1, and TIC4029_8. DNA constructs are provided which contain a recombinant nucleic acid sequence encoding one or more of the disclosed pesticidal proteins. Transgenic plants, plant cells, seed, and plant parts resistant to Lepidopteran infestation are provided which contain recombinant nucleic acid sequences encoding pesticidal proteins of the TIC4029 class. Methods for detecting the presence of the recombinant nucleic acid sequences or the proteins of the TIC4029 class in a biological sample, and methods of controlling Lepidopteran species pests using any of the TIC4029, TIC4029_1, and TIC4029_8 pesticidal proteins are also provided.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: November 28, 2023
    Inventors: David J. Bowen, Catherine A. Chay, Arlene R. Howe, Matthew S. Marengo, Jason Meyer, Jason S Milligan, Brian E. Weiner
  • Publication number: 20230301308
    Abstract: Pesticidal proteins exhibiting inhibitory, suppressive, and toxic activity against Lepidopteran pest species are disclosed, and include, but are not limited to, TIC4064 and TIC4064 amino acid sequence variants. DNA constructs are provided which contain a recombinant nucleic acid sequence encoding one or more of the disclosed pesticidal proteins. Transgenic plants, plant cells, seed, and plant parts resistant to Lepidopteran infestation are provided which contain recombinant nucleic acid sequences encoding the pesticidal proteins of the present invention. Methods for detecting the presence of the recombinant nucleic acid sequences or the proteins of the present invention in a biological sample, and methods of controlling Lepidopteran species pests using any of the TIC4064 and TIC4064 amino acid sequence variant pesticidal proteins are also provided.
    Type: Application
    Filed: February 28, 2023
    Publication date: September 28, 2023
    Inventors: David J. Bowen, Catherine A. Chay, Arlene R. Howe, Jason S. Milligan, Christina M. Taylor, Monika R. VanGordon, Kimberly M. Wegener, Brian E. Weiner
  • Patent number: 11744250
    Abstract: Pesticidal proteins exhibiting inhibitory, suppressive, and toxic activity against Lepidopteran pest species are disclosed, and include, but are not limited to, TIC4064 and TIC4064 amino acid sequence variants. DNA constructs are provided which contain a recombinant nucleic acid sequence encoding one or more of the disclosed pesticidal proteins. Transgenic plants, plant cells, seed, and plant parts resistant to Lepidopteran infestation are provided which contain recombinant nucleic acid sequences encoding the pesticidal proteins of the present invention. Methods for detecting the presence of the recombinant nucleic acid sequences or the proteins of the present invention in a biological sample, and methods of controlling Lepidopteran species pests using any of the TIC4064 and TIC4064 amino acid sequence variant pesticidal proteins are also provided.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: September 5, 2023
    Assignee: MONSANTO TECHNOLOGY, LLC
    Inventors: David J. Bowen, Catherine A. Chay, Arlene R. Howe, Jason S. Milligan, Christina M. Taylor, Monika R. VanGordon, Kimberly M. Wegener, Brian E. Weiner
  • Publication number: 20220256863
    Abstract: Pesticidal proteins exhibiting toxic activity against Lepidopteran pest species are disclosed, and include, but are not limited to, TIC4029, TIC4029_1, and TIC4029_8. DNA constructs are provided which contain a recombinant nucleic acid sequence encoding one or more of the disclosed pesticidal proteins. Transgenic plants, plant cells, seed, and plant parts resistant to Lepidopteran infestation are provided which contain recombinant nucleic acid sequences encoding pesticidal proteins of the TIC4029 class. Methods for detecting the presence of the recombinant nucleic acid sequences or the proteins of the TIC4029 class in a biological sample, and methods of controlling Lepidopteran species pests using any of the TIC4029, TIC4029_1, and TIC4029_8 pesticidal proteins are also provided.
    Type: Application
    Filed: December 20, 2021
    Publication date: August 18, 2022
    Inventors: David J. Bowen, Catherine A. Chay, Arlene R. Howe, Matthew S. Marengo, Jason Meyer, Jason S. Milligan, Brian E. Weiner
  • Publication number: 20220192200
    Abstract: Pesticidal proteins exhibiting inhibitory, suppressive, and toxic activity against Lepidopteran pest species are disclosed, and include, but are not limited to, TIC4064 and TIC4064 amino acid sequence variants. DNA constructs are provided which contain a recombinant nucleic acid sequence encoding one or more of the disclosed pesticidal proteins. Transgenic plants, plant cells, seed, and plant parts resistant to Lepidopteran infestation are provided which contain recombinant nucleic acid sequences encoding the pesticidal proteins of the present invention. Methods for detecting the presence of the recombinant nucleic acid sequences or the proteins of the present invention in a biological sample, and methods of controlling Lepidopteran species pests using any of the TIC4064 and TIC4064 amino acid sequence variant pesticidal proteins are also provided.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 23, 2022
    Inventors: David J. Bowen, Catherine A. Chay, Arlene R. Howe, Jason S. Milligan, Christina M. Taylor, Monika R. VanGordon, Kimberly M. Wegener, Brian E. Weiner
  • Publication number: 20170029844
    Abstract: Pesticidal proteins are provided that combine two or more modes of action into a single molecule. These pesticidal proteins therefor exhibit greater efficacy and/or durability of resistance, for the purposes of pest control, and can be utilized for pest control by provision in the diet of a pest organism, or by topical application to crop plants and/or pests. Methods and compositions for producing and using such proteins are also provided.
    Type: Application
    Filed: July 22, 2016
    Publication date: February 2, 2017
    Inventors: Timothy K. Ball, Artem G. Evdokimov, Larry A. Gilbertson, Victor M. Guzov, Jeffrey A. Haas, Qing Huai, Sergey Ivashuta, Melissa M. Kemp, Yifei Kong, Thomas M. Malvar, Byron V. Olsen, Parthasarathy Ramaseshadri, Brian E. Weiner