Patents by Inventor Brian F. Woodfield

Brian F. Woodfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160236176
    Abstract: The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.
    Type: Application
    Filed: February 29, 2016
    Publication date: August 18, 2016
    Applicant: Brigham Young University
    Inventors: Maryam Khosravi-Mardkhe, Brian F. Woodfield, Calvin H. Bartholomew, Baiyu Huang
  • Patent number: 9334173
    Abstract: Methods for making high-surface area, high-porosity, stable metal oxides, such as, but not limited to materials used as adsorbents and catalyst supports include (i) forming a solvent deficient precursor mixture from a metal salt and a base and reacting the metal ions and base ions in the solvent deficient precursor mixture to form an intermediate hydroxide product (e.g., metal hydroxide or metal oxide hydroxide), (ii) causing the intermediate hydroxide to form nanoparticles (e.g., by heating), and (iii) calcining the intermediate nanoparticles to sinter the nanoparticles together and yield a highly porous, stable metal oxide aggregate having a pore structure.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: May 10, 2016
    Assignee: Brigham Young University
    Inventors: Calvin H. Bartholomew, Brian F. Woodfield, Baiyu Huang, Rebecca Elizabeth Olsen, Lynn Astle
  • Patent number: 9289750
    Abstract: The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 22, 2016
    Assignee: Brigham Young University
    Inventors: Maryam Khosravi-Mardkhe, Brian F. Woodfield, Calvin H. Bartholomew, Baiyu Huang
  • Patent number: 9114378
    Abstract: A method of making iron and cobalt pre-catalysts and catalysts in activated, finished form suitable for use in Fischer-Tropsch synthesis. The pre-catalysts are prepared by mixing an iron or cobalt salt, a base, and a metal oxide textural promoter or support. The reaction is carried out in a solvent deficient environment. The resulting product is then calcined at temperatures of about 300-500° C. to produce a metal oxide. The catalysts are prepared by reducing the metal oxide in the presence of hydrogen at temperatures of about 300-500° C. and carbiding the reduced metal in the case of iron.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 25, 2015
    Assignee: Brigham Young University
    Inventors: Brian F. Woodfield, Calvin H. Bartholomew, Kyle Brunner, William Hecker, Xuchu Ma, Fen Xu, Lynn Astle
  • Patent number: 9079164
    Abstract: Methods are described for making a texturized catalyst. The textural promoter may be a high-surface area, high-porosity, stable metal oxide support. The catalyst is manufactured by reacting catalyst precursor materials and support materials in a single, solvent deficient reaction to form a catalyst. The catalyst may be particles or a coating or partial coating of a support surface.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 14, 2015
    Assignee: Brigham Young University
    Inventors: Brian F. Woodfield, Stacey Smith, David Selck, Calvin H. Bartholomew, Xuchu Ma, Fen Xu, Rebecca E. Olsen, Lynn Astle
  • Publication number: 20140256543
    Abstract: The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: Brigham Young University
    Inventors: Maryam Khosravi-Mardkhe, Brian F. Woodfield, Calvin H. Bartholomew, Baiyu Huang
  • Publication number: 20130274093
    Abstract: A method of making iron and cobalt pre-catalysts and catalysts in activated, finished form suitable for use in Fischer-Tropsch synthesis. The pre-catalysts are prepared by mixing an iron or cobalt salt, a base, and a metal oxide textural promoter or support. The reaction is carried out in a solvent deficient environment. The resulting product is then calcined at temperatures of about 300-500° C. to produce a metal oxide. The catalysts are prepared by reducing the metal oxide in the presence of hydrogen at temperatures of about 300-500° C. and carbiding the reduced metal in the case of iron.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 17, 2013
    Inventors: Brian F. Woodfield, Calvin H. Bartholomew, Kyle Brunner, William Hecker, Xuchu Ma, Fen Xu, Lynn Astle
  • Publication number: 20130267411
    Abstract: Methods are described for making a texturized catalyst. The textural promoter may be a high-surface area, high-porosity, stable metal oxide support. The catalyst is manufactured by reacting catalyst precursor materials and support materials in a single, solvent deficient reaction to form a catalyst. The catalyst may be particles or a coating or partial coating of a support surface.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 10, 2013
    Applicant: BRIGHAM YOUNG UNIVERSITY,
    Inventors: Brian F. Woodfield, Stacey Smith, David Selck, Calvin H. Bartholomew, Xuchu Ma, Fen Xu, Rebecca E. Olsen, Lynn Astle
  • Patent number: 8211388
    Abstract: In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: July 3, 2012
    Assignee: Brigham Young University
    Inventors: Brian F. Woodfield, Shengfeng Liu, Juliana Boerio-Goates, Qingyuan Liu, Stacey Janel Smith
  • Publication number: 20110257008
    Abstract: Methods for making high-surface area, high-porosity, stable metal oxides, such as, but not limited to materials used as adsorbents and catalyst supports include (i) forming a solvent deficient precursor mixture from a metal salt and a base and reacting the metal ions and base ions in the solvent deficient precursor mixture to form an intermediate hydroxide product (e.g., metal hydroxide or metal oxide hydroxide), (ii) causing the intermediate hydroxide to form nanoparticles (e.g., by heating), and (iii) calcining the intermediate nanoparticles to sinter the nanoparticles together and yield a highly porous, stable metal oxide aggregate having a pore structure.
    Type: Application
    Filed: March 22, 2011
    Publication date: October 20, 2011
    Applicant: BRIGHAM YOUNG UNIVERSITY
    Inventors: Calvin H. Bartholomew, Brian F. Woodfield, Baiyu Huang, Rebecca Elizabeth Olsen, Lynn Astle