Patents by Inventor Brian Gestner

Brian Gestner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11467014
    Abstract: A fluid flow meter system for monitoring fluid flow through a lumen includes a first ultrasonic transducer configured to transmit one or more versions of a transmit (TX) signal through a fluid flowing within the lumen, and a second ultrasonic transducer configured to receive one or more respective receive (RX) signals. The fluid flow meter system includes an analog-to-digital converter (ADC) configured to sample, at a first frequency, the one or more RX ultrasonic signals and a processor configured to generate a fine resolution signal based on the one or more RX ultrasonic signals. The fine resolution signal is associated with a second sampling rate higher than the first sampling rate. The processor is also configured to compute a cross-correlation signal indicative of cross-correlation between the fine resolution signal and a waveform and determine an estimated fluid flow parameter based on the computed cross-correlation signal.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: October 11, 2022
    Assignee: StreamLabs, Inc.
    Inventor: Brian Gestner
  • Patent number: 11243105
    Abstract: Methods and systems for configuring a fluid flow meter include a processor obtaining a measurement signal recorded by the fluid flow meter. The processor can determine a whitening frequency band. The processor can then construct a whitening filter based on the measurement signal and the whitening frequency band. The processor can then generate a reference signal based on the whitening filter and the measurement signal. The processor can provide the whitening filter and the reference signal for use by the fluid flow meter to measure a time shift between the reference signal and another measurement signal.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: February 8, 2022
    Assignee: StreamLabs, Inc.
    Inventors: Brian Gestner, Francis M. Mess, Jeffrey L. Leaders
  • Patent number: 11193805
    Abstract: A fluid flow meter can include a sensor capable of transmitting a transmit signal to propagate, at least partially, through a fluid in a pipe and receiving a respective receive signal. The fluid flow meter can include a memory storing computer code instructions and a plurality of pipe type signatures associated with a plurality of pipe types. Each pipe type signature of a respective pipe type of the plurality of pipe types can include one or more characteristics of receive signals associated with that pipe type. The fluid flow meter can also include a processor communicatively coupled to the sensor and to the memory. When executing the computer code instructions, the processor can determine one or more signal features of the receive signal, and identify a pipe type of the pipe based on the one or more signal features of the receive signal and the plurality of pipe type signatures.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: December 7, 2021
    Assignee: StreamLabs, Inc.
    Inventors: Brian Gestner, Thea Knudsen, Francis M. Mess, Jeffrey L. Leaders
  • Patent number: 10969261
    Abstract: A fluid manifold is capable of channeling and monitoring fluid flow within a fluid distribution system. The manifold includes one or more input lumens. Each input lumen associated with a respective inlet port. The manifold also includes a plurality of output lumens such that each output lumen is associated with a respective outlet port and at least one input lumen is coupled to two or more output lumens. The manifold also includes one or more flow sensors capable of measuring fluid flow parameters of fluid flowing through at least one of the one or more input lumens and the plurality of output lumens. In some implementations, a flow sensor can be mounted to each output lumen of the manifold.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: April 6, 2021
    Assignee: Reliance Worldwide Corporation
    Inventors: Jeffrey L. Leaders, Matthew Shane Smith, Francis M. Mess, Samuel Elia, Jorge C. Almirall, Brian Gestner
  • Patent number: 10870970
    Abstract: According to at least one aspect, a fluid flow monitoring system includes an ultrasonic sensor for generating measurement signals associated with respective ultrasonic signals propagating through the fluid in the lumen, a shut-off valve for blocking fluid flow in the lumen, and a controller. The controller can be communicatively coupled to the ultrasonic sensor and to the shut-off valve. The controller can be configured to compute a plurality of fluid flow parameter estimates based on a plurality of measurement signals generated by the ultrasonic sensor over a time window while the shut-off valve is open. The controller can obtain an offset value associated with fluid flow parameter measurements during a zero flow state of the shut-off valve. The controller can then check for presence of a fluid leak event based on the fluid flow parameter estimates over the time window and the offset value.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: December 22, 2020
    Assignee: RELIANCE WORLDWIDE CORPORATION
    Inventors: Michael Hammond, Francis M. Mess, Samuel Elia, Jorge C. Almirall, Brian Gestner, Jeffrey L. Leaders, Mathew Shane Smith
  • Patent number: 10865546
    Abstract: According to at least one aspect, a fluid flow monitoring system includes an ultrasonic sensor for generating measurement signals associated with respective ultrasonic signals propagating through the fluid in the lumen, a shut-off valve for blocking fluid flow in the lumen, and a controller. The controller can be communicatively coupled to the ultrasonic sensor and to the shut-off valve. The controller can be configured to compute a plurality of fluid flow parameter estimates based on a plurality of measurement signals generated by the ultrasonic sensor over a time window while the shut-off valve is open. The controller can obtain an offset value associated with fluid flow parameter measurements during a zero flow state of the shut-off valve. The controller can then check for presence of a fluid leak event based on the fluid flow parameter estimates over the time window and the offset value.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: December 15, 2020
    Assignee: Reliance Worldwide Corporation
    Inventors: Michael Hammond, Francis M. Mess, Samuel Elia, Jorge C. Almirall, Brian Gestner, Jeffrey L. Leaders, Mathew Shane Smith
  • Publication number: 20200363246
    Abstract: A fluid flow meter system for monitoring fluid flow through a lumen includes a first ultrasonic transducer configured to transmit one or more versions of a transmit (TX) signal through a fluid flowing within the lumen, and a second ultrasonic transducer configured to receive one or more respective receive (RX) signals. The fluid flow meter system includes an analog-to-digital converter (ADC) configured to sample, at a first frequency, the one or more RX ultrasonic signals and a processor configured to generate a fine resolution signal based on the one or more RX ultrasonic signals. The fine resolution signal is associated with a second sampling rate higher than the first sampling rate. The processor is also configured to compute a cross-correlation signal indicative of cross-correlation between the fine resolution signal and a waveform and determine an estimated fluid flow parameter based on the computed cross-correlation signal.
    Type: Application
    Filed: July 31, 2020
    Publication date: November 19, 2020
    Applicant: Reliance Worldwide Corporation
    Inventor: Brian Gestner
  • Patent number: 10837160
    Abstract: According to at least one aspect, a fluid flow monitoring system includes an ultrasonic sensor for generating measurement signals associated with respective ultrasonic signals propagating through the fluid in the lumen, a shut-off valve for blocking fluid flow in the lumen, and a controller. The controller can be communicatively coupled to the ultrasonic sensor and to the shut-off valve. The controller can be configured to compute a plurality of fluid flow parameter estimates based on a plurality of measurement signals generated by the ultrasonic sensor over a time window while the shut-off valve is open. The controller can obtain an offset value associated with fluid flow parameter measurements during a zero flow state of the shut-off valve. The controller can then check for presence of a fluid leak event based on the fluid flow parameter estimates over the time window and the offset value.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: November 17, 2020
    Assignee: Reliance Worldwide Corporation
    Inventors: Michael Hammond, Francis M. Mess, Samuel Elia, Jorge C. Almirall, Brian Gestner, Jeffrey L. Leaders, Mathew Shane Smith
  • Publication number: 20200355529
    Abstract: A fluid manifold is capable of channeling and monitoring fluid flow within a fluid distribution system. The manifold includes one or more input lumens. Each input lumen associated with a respective inlet port. The manifold also includes a plurality of output lumens such that each output lumen is associated with a respective outlet port and at least one input lumen is coupled to two or more output lumens. The manifold also includes one or more flow sensors capable of measuring fluid flow parameters of fluid flowing through at least one of the one or more input lumens and the plurality of output lumens. In some implementations, a flow sensor can be mounted to each output lumen of the manifold.
    Type: Application
    Filed: July 29, 2020
    Publication date: November 12, 2020
    Applicant: c/o Reliance Worldwide Corporation
    Inventors: Jeffrey L. Leaders, Matthew Shane Smith, Francis M. Mess, Samuel Elia, Jorge C. Almirall, Brian Gestner
  • Patent number: 10830664
    Abstract: Systems and methods described herein allow for reliable and computationally efficient detection of fluid leak events or abnormal fluid usage/flow events. A fluid flow meter can measure fluid flow parameter values during a training phase. The fluid flow meter can generate, using the fluid flow parameter data, a training fluid flow duration pattern indicative of, for each value range of a plurality of value ranges of a respective time threshold value. The time threshold value can represent an estimate of a maximum fluid flow duration, within a given fluid flow event, for fluid flow associated with the corresponding value range. During a detection phase, the fluid flow meter can determine, for a value range, a respective fluid flow duration within a current fluid flow event. The fluid flow meter can detect a leak event upon the fluid flow duration exceeds the time threshold value for the same value range.
    Type: Grant
    Filed: October 27, 2019
    Date of Patent: November 10, 2020
    Assignee: Reliance Worldwide Corporation
    Inventors: Ian Kent, Brian Gestner
  • Patent number: 10775213
    Abstract: A fluid manifold is capable of channeling and monitoring fluid flow within a fluid distribution system. The manifold includes one or more input lumens. Each input lumen associated with a respective inlet port. The manifold also includes a plurality of output lumens such that each output lumen is associated with a respective outlet port and at least one input lumen is coupled to two or more output lumens. The manifold also includes one or more flow sensors capable of measuring fluid flow parameters of fluid flowing through at least one of the one or more input lumens and the plurality of output lumens. In some implementations, a flow sensor can be mounted to each output lumen of the manifold.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: September 15, 2020
    Assignee: Reliance Worldwide Corporation
    Inventors: Jeffrey L. Leaders, Matthew Shane Smith, Francis M. Mess, Samuel Elia, Jorge C. Almirall, Brian Gestner
  • Patent number: 10753777
    Abstract: A fluid flow meter system for monitoring fluid flow through a lumen includes a first ultrasonic transducer configured to transmit one or more versions of a transmit (TX) signal through a fluid flowing within the lumen, and a second ultrasonic transducer configured to receive one or more respective receive (RX) signals. The fluid flow meter system includes an analog-to-digital converter (ADC) configured to sample, at a first frequency, the one or more RX ultrasonic signals and a processor configured to generate a fine resolution signal based on the one or more RX ultrasonic signals. The fine resolution signal is associated with a second sampling rate higher than the first sampling rate. The processor is also configured to compute a cross-correlation signal indicative of cross-correlation between the fine resolution signal and a waveform and determine an estimated fluid flow parameter based on the computed cross-correlation signal.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: August 25, 2020
    Assignee: Reliance Worldwide Corporation
    Inventor: Brian Gestner
  • Publication number: 20200264068
    Abstract: According to at least one aspect, the present disclosure is directed to leak detection. There is pressure sensor for measuring pressure of fluid within a hollow structure, a shut-off valve for controlling fluid flow through the hollow structure, and a processor communicatively coupled to the pressure sensor and to the shut-off valve. The processor can acquire, from the pressure sensor, a first pressure measurement of the fluid while the shut-off valve is in an open state, and a second pressure measurement of the fluid while the shut-off valve is in a closed state. The processor can detect a fluid leak event based on the first and second pressure measurements.
    Type: Application
    Filed: February 17, 2020
    Publication date: August 20, 2020
    Applicant: Reliance Worldwide Corporation
    Inventors: Francis McCarthy Mess, Ian Kent, Alex Neal Rycroft, Jorge Carlos Almirall, Brian Gestner
  • Publication number: 20200132565
    Abstract: Systems and methods described herein allow for reliable and computationally efficient detection of fluid leak events or abnormal fluid usage/flow events. A fluid flow meter can measure fluid flow parameter values during a training phase. The fluid flow meter can generate, using the fluid flow parameter data, a training fluid flow duration pattern indicative of, for each value range of a plurality of value ranges of a respective time threshold value. The time threshold value can represent an estimate of a maximum fluid flow duration, within a given fluid flow event, for fluid flow associated with the corresponding value range. During a detection phase, the fluid flow meter can determine, for a value range, a respective fluid flow duration within a current fluid flow event. The fluid flow meter can detect a leak event upon the fluid flow duration exceeds the time threshold value for the same value range.
    Type: Application
    Filed: October 27, 2019
    Publication date: April 30, 2020
    Applicant: Reliance Worldwide Corporation
    Inventors: Ian Kent, Brian Gestner
  • Publication number: 20200033168
    Abstract: A fluid manifold is capable of channeling and monitoring fluid flow within a fluid distribution system. The manifold includes one or more input lumens. Each input lumen associated with a respective inlet port. The manifold also includes a plurality of output lumens such that each output lumen is associated with a respective outlet port and at least one input lumen is coupled to two or more output lumens. The manifold also includes one or more flow sensors capable of measuring fluid flow parameters of fluid flowing through at least one of the one or more input lumens and the plurality of output lumens. In some implementations, a flow sensor can be mounted to each output lumen of the manifold.
    Type: Application
    Filed: August 9, 2019
    Publication date: January 30, 2020
    Applicant: Reliance Worldwide Corporation
    Inventors: Jeffrey L. Leaders, Matthew Shane Smith, Francis M. Mess, Samuel Elia, Jorge C. Almirall, Brian Gestner
  • Publication number: 20190368909
    Abstract: A fluid flow meter system for monitoring fluid flow through a lumen includes a first ultrasonic transducer configured to transmit one or more versions of a transmit (TX) signal through a fluid flowing within the lumen, and a second ultrasonic transducer configured to receive one or more respective receive (RX) signals. The fluid flow meter system includes an analog-to-digital converter (ADC) configured to sample, at a first frequency, the one or more RX ultrasonic signals and a processor configured to generate a fine resolution signal based on the one or more RX ultrasonic signals. The fine resolution signal is associated with a second sampling rate higher than the first sampling rate. The processor is also configured to compute a cross-correlation signal indicative of cross-correlation between the fine resolution signal and a waveform and determine an estimated fluid flow parameter based on the computed cross-correlation signal.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Applicant: Reliance Worldwide Corporation
    Inventor: Brian Gestner
  • Patent number: 10422674
    Abstract: A fluid flow meter system for monitoring fluid flow through a lumen includes a first ultrasonic transducer configured to transmit one or more versions of a transmit (TX) signal through a fluid flowing within the lumen, and a second ultrasonic transducer configured to receive one or more respective receive (RX) signals. The fluid flow meter system includes an analog-to-digital converter (ADC) configured to sample, at a first frequency, the one or more RX ultrasonic signals and a processor configured to generate a fine resolution signal based on the one or more RX ultrasonic signals. The fine resolution signal is associated with a second sampling rate higher than the first sampling rate. The processor is also configured to compute a cross-correlation signal indicative of cross-correlation between the fine resolution signal and a waveform and determine an estimated fluid flow parameter based on the computed cross-correlation signal.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: September 24, 2019
    Assignee: Reliance Worldwide Corporation
    Inventor: Brian Gestner
  • Patent number: 10378940
    Abstract: A fluid manifold is capable of channeling and monitoring fluid flow within a fluid distribution system. The manifold includes one or more input lumens. Each input lumen associated with a respective inlet port. The manifold also includes a plurality of output lumens such that each output lumen is associated with a respective outlet port and at least one input lumen is coupled to two or more output lumens. The manifold also includes one or more flow sensors capable of measuring fluid flow parameters of fluid flowing through at least one of the one or more input lumens and the plurality of output lumens. In some implementations, a flow sensor can be mounted to each output lumen of the manifold.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: August 13, 2019
    Inventors: Jeffrey L. Leaders, Matthew Shane Smith, Francis M. Mess, Samuel Elia, Jorge C. Almirall, Brian Gestner
  • Publication number: 20190219428
    Abstract: A fluid flow meter can include a sensor capable of transmitting a transmit signal to propagate, at least partially, through a fluid in a pipe and receiving a respective receive signal. The fluid flow meter can include a memory storing computer code instructions and a plurality of pipe type signatures associated with a plurality of pipe types. Each pipe type signature of a respective pipe type of the plurality of pipe types can include one or more characteristics of receive signals associated with that pipe type. The fluid flow meter can also include a processor communicatively coupled to the sensor and to the memory. When executing the computer code instructions, the processor can determine one or more signal features of the receive signal, and identify a pipe type of the pipe based on the one or more signal features of the receive signal and the plurality of pipe type signatures.
    Type: Application
    Filed: March 25, 2019
    Publication date: July 18, 2019
    Applicant: Reliance Worldwide Corporation
    Inventors: Brian Gestner, Thea Knudsen, Francis M. Mess, Jeffrey L. Leaders
  • Patent number: 10309813
    Abstract: A fluid flow meter system for monitoring fluid flow through a lumen includes a first ultrasonic transducer configured to transmit one or more versions of a transmit (TX) signal through a fluid flowing within the lumen, and a second ultrasonic transducer configured to receive one or more respective receive (RX) signals. The fluid flow meter system includes an analog-to-digital converter (ADC) configured to sample, at a first frequency, the one or more RX ultrasonic signals and a processor configured to generate a fine resolution signal based on the one or more RX ultrasonic signals. The fine resolution signal is associated with a second sampling rate higher than the first sampling rate. The processor is also configured to compute a cross-correlation signal indicative of cross-correlation between the fine resolution signal and a waveform and determine an estimated fluid flow parameter based on the computed cross-correlation signal.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: June 4, 2019
    Assignee: Reliance Worldwide Corporation
    Inventor: Brian Gestner