Patents by Inventor Brian H. Davison

Brian H. Davison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240034937
    Abstract: A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
    Type: Application
    Filed: August 22, 2023
    Publication date: February 1, 2024
    Applicant: UT-Battelle, LLC
    Inventors: Chaitanya K. NARULA, Brian H. DAVISON, Martin KELLER
  • Publication number: 20230415132
    Abstract: A catalyst composition for converting an alcohol to olefins, the catalyst composition comprising the following components: (a) a support (e.g., particles) comprising silicon and oxygen; (b) at least one of copper and silver residing on and/or incorporated into said support; and (c) at least one lanthanide element residing on and/or incorporated into said support. The catalyst may also further include component (d), which is zinc. Also described herein is a method for converting an alcohol to one or more olefinic compounds (an olefin fraction) by contacting the alcohol with a catalyst at a temperature of at least 100° C. and up to 500° C. to result in direct conversion of the alcohol to an olefin fraction containing one or more olefinic compounds containing at least three carbon atoms; wherein ethylene and propylene are produced in a minor proportion of the olefin fraction, and butenes and higher olefins are produced in major proportion.
    Type: Application
    Filed: May 18, 2023
    Publication date: December 28, 2023
    Inventors: Zhenglong Li, Brian H. Davison, Junyan Zhang
  • Patent number: 11773333
    Abstract: A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: October 3, 2023
    Assignee: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller
  • Patent number: 11691129
    Abstract: A catalyst composition for converting an alcohol to olefins, the catalyst composition comprising the following components: (a) a support (e.g., particles) comprising silicon and oxygen; (b) at least one of copper and silver residing on and/or incorporated into said support; and (c) at least one lanthanide element residing on and/or incorporated into said support. The catalyst may also further include component (d), which is zinc. Also described herein is a method for converting an alcohol to one or more olefinic compounds (an olefin fraction) by contacting the alcohol with a catalyst at a temperature of at least 100° C. and up to 500° C. to result in direct conversion of the alcohol to an olefin fraction containing one or more olefinic compounds containing at least three carbon atoms; wherein ethylene and propylene are produced in a minor proportion of the olefin fraction, and butenes and higher olefins are produced in major proportion.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: July 4, 2023
    Assignee: UT-Battelle, LLC
    Inventors: Zhenglong Li, Brian H. Davison, Junyan Zhang
  • Publication number: 20220234031
    Abstract: A catalyst composition for converting an alcohol to olefins, the catalyst composition comprising the following components: (a) a support (e.g., particles) comprising silicon and oxygen; (b) at least one of copper and silver residing on and/or incorporated into said support; and (c) at least one lanthanide element residing on and/or incorporated into said support. The catalyst may also further include component (d), which is zinc. Also described herein is a method for converting an alcohol to one or more olefinic compounds (an olefin fraction) by contacting the alcohol with a catalyst at a temperature of at least 100° C. and up to 500° C. to result in direct conversion of the alcohol to an olefin fraction containing one or more olefinic compounds containing at least three carbon atoms; wherein ethylene and propylene are produced in a minor proportion of the olefin fraction, and butenes and higher olefins are produced in major proportion.
    Type: Application
    Filed: January 26, 2022
    Publication date: July 28, 2022
    Inventors: Zhenglong Li, Brian H. Davison, Junyan Zhang
  • Patent number: 10696606
    Abstract: A method for converting an alcohol to a hydrocarbon fraction reduced in gaseous hydrocarbon content, the method comprising: (i) contacting said alcohol with a metal-loaded zeolite catalyst under conditions suitable for converting said alcohol to a first hydrocarbon fraction containing liquid hydrocarbons having at least five carbon atoms along with gaseous hydrocarbons having less than five carbon atoms, wherein said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said first hydrocarbon fraction; and (ii) selectively removing said gaseous hydrocarbons from the first hydrocarbon fraction and contacting said gaseous hydrocarbons with a metal-loaded zeolite catalyst under conditions suitable for converting said gaseous hydrocarbons into liquid hydrocarbons having at least five carbon atoms to produce a second hydrocarbon fraction reduced in gaseous hydrocarbon content, wherein the metal-loaded zeolite catalyst in steps (i) and (ii) are the same or different.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: June 30, 2020
    Assignee: UT-Battelle, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison, Zhenglong Li
  • Publication number: 20180187091
    Abstract: A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 5, 2018
    Applicant: UT-Battelle, LLC
    Inventors: Chaitanya K. NARULA, Brian H. DAVISON, Martin KELLER
  • Patent number: 9944861
    Abstract: A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: April 17, 2018
    Assignee: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison
  • Patent number: 9938467
    Abstract: A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: April 10, 2018
    Assignee: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller
  • Publication number: 20170355649
    Abstract: A method for converting an alcohol to a hydrocarbon fraction reduced in gaseous hydrocarbon content, the method comprising: (i) contacting said alcohol with a metal-loaded zeolite catalyst under conditions suitable for converting said alcohol to a first hydrocarbon fraction containing liquid hydrocarbons having at least five carbon atoms along with gaseous hydrocarbons having less than five carbon atoms, wherein said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said first hydrocarbon fraction; and (ii) selectively removing said gaseous hydrocarbons from the first hydrocarbon fraction and contacting said gaseous hydrocarbons with a metal-loaded zeolite catalyst under conditions suitable for converting said gaseous hydrocarbons into liquid hydrocarbons having at least five carbon atoms to produce a second hydrocarbon fraction reduced in gaseous hydrocarbon content, wherein the metal-loaded zeolite catalyst in steps (i) and (ii) are the same or different.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 14, 2017
    Inventors: Chaitanya K. Narula, Brian H. Davison, Zhenglong Li
  • Publication number: 20170066974
    Abstract: A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Applicant: UT-BATTELLE, LLC
    Inventors: Chaitanya K. NARULA, Brian H. DAVISON, Martin KELLER
  • Patent number: 9533921
    Abstract: A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: January 3, 2017
    Assignee: UT-BATTELLE, LLC.
    Inventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller
  • Patent number: 9434658
    Abstract: A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: September 6, 2016
    Assignee: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller
  • Patent number: 9278892
    Abstract: A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: March 8, 2016
    Assignee: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller
  • Publication number: 20160032195
    Abstract: A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.
    Type: Application
    Filed: October 8, 2015
    Publication date: February 4, 2016
    Applicant: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison
  • Patent number: 9181493
    Abstract: A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: November 10, 2015
    Assignee: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison
  • Publication number: 20150011813
    Abstract: A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 8, 2015
    Inventors: Chaitanya K. Narula, Brian H. Davison
  • Publication number: 20140322781
    Abstract: A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 30, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller
  • Publication number: 20140273146
    Abstract: A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller
  • Publication number: 20140256010
    Abstract: A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Chaitanya K. Narula, Brian H. Davison, Martin Keller