Patents by Inventor Brian Hamrick
Brian Hamrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250066714Abstract: A method for contamination control when growing yeasts is provided. Bacterial contamination is controlled by using urea as the primary nitrogen source while simultaneously limiting the amount of nickel available to contaminating bacteria. Bacteria require nickel as a cofactor for urease enzymes in order to use urea for growth while yeasts do not require nickel as a cofactor for any enzymes. Nickel is limited by using titanium in plate heat exchangers instead of stainless steel. Ethyl carbamate is limited by using a carbon/nitrogen ratio that consumes all urea during fermentation and by separating co-products after fermentation and before distillation. Yeast recycling is performed by using either single-step or two-step centrifugation, without acid washing. This method enables yeast recycling with sugarcane ethanol and sugar beet ethanol production. This method also enables yeast recycling with corn ethanol and grain ethanol production with coproduct recovery after fermentation and before distillation.Type: ApplicationFiled: December 7, 2023Publication date: February 27, 2025Inventor: Edward Brian HAMRICK
-
Publication number: 20180282683Abstract: A method for separating ethanol from fermented biomass is provided. Fermented biomass that is rich in ethanol is used directly as packing material in a distillation column, and a small amount of water at the bottom of the column is used to efficiently transfer heat to the biomass at the bottom of the column. The fermented biomass packing has a high ratio of surface area to volume, making an efficient packing material. As vapor condenses on the biomass, diffusion of ethanol/water vapor from the body of the biomass enriches the ethanol concentration at the surface of the biomass. Droplets containing lower concentrations of ethanol drip downwards from the biomass, and vapors containing higher concentrations of ethanol rise upwards from the biomass, resulting in a higher concentration of ethanol at the top of the column than was initially in the biomass.Type: ApplicationFiled: February 19, 2018Publication date: October 4, 2018Inventor: Edward Brian HAMRICK
-
Patent number: 10087411Abstract: A method for separating ethanol from fermented biomass is provided. Fermented biomass that is rich in ethanol is used directly as packing material in a distillation column, and a small amount of water at the bottom of the column is used to efficiently transfer heat to the biomass at the bottom of the column. The fermented biomass packing has a high ratio of surface area to volume, making an efficient packing material. As vapor condenses on the biomass, diffusion of ethanol/water vapor from the body of the biomass enriches the ethanol concentration at the surface of the biomass. Droplets containing lower concentrations of ethanol drip downwards from the biomass, and vapors containing higher concentrations of ethanol rise upwards from the biomass, resulting in a higher concentration of ethanol at the top of the column than was initially in the biomass.Type: GrantFiled: February 19, 2018Date of Patent: October 2, 2018Inventor: Edward Brian Hamrick
-
Patent number: 9631209Abstract: A method for fermenting stalks of the Poaceae family is provided. This includes sugarcane, sorghum and maize stalks. This method compresses stalks between rollers to between 20% and 90% of their diameter while the stalks are submerged in an aqueous reagent solution. This fractures the stalks in the axial direction without significant loss of juice while simultaneously pulling the reagent solution into the resulting network of cracks in the parenchyma tissue. In some variants, the aqueous reagent solution contains fermentation organisms, the sugars diffuse from the parenchyma cells, come into contact with the fermentation organisms located in the cracks in the stalks and produce ethanol and lactic acid within the stalks. In some variants, combinations of enzymes, acids and Fenton reagent in the aqueous reagent solution diffuse into and degrade the lignocellulosic matrix in the stalks.Type: GrantFiled: February 4, 2017Date of Patent: April 25, 2017Inventor: Edward Brian Hamrick
-
Patent number: 9499839Abstract: A method for fermenting carbohydrate-rich crops is provided. Sugar beet, sugar cane, sweet sorghum, tropical maize hybrids and fruits are rich in simple sugars; potato, sweet potato, cassava and yam are rich in starch; and Jerusalem artichoke is rich in inulin. This method uses vacuum infusion to infuse yeast into the intercellular space (apoplast) of the parenchyma tissue. The simple sugars diffuse into the apoplast, come into contact with the yeast and produce ethanol. Ethanol can be extracted from the crop by vacuum stripping or crushing or can be left inside the starchy crop to preserve it. In some variants, pectinase enzymes degrade the parenchyma cell walls to speed up diffusion of simple sugars to the yeast, speed up diffusion of amylase to starch granules or speed up diffusion of inulinase to insoluble inulin.Type: GrantFiled: December 11, 2015Date of Patent: November 22, 2016Inventor: Edward Brian Hamrick
-
Patent number: 9428772Abstract: A method for producing fermentation products from lignocellulosic biomass is provided. Lignocellulosic biomass is composed of lignocellulosic fibers which are hollow and primarily contain cellulose, hemicellulose and lignin. Lignin is concentrated in the outer fiber wall and glues the fibers into bundles, but the inner fiber wall has a much lower concentration of lignin and has more easily accessible cellulose and hemicellulose. This method uses vacuum infusion to infuse enzymes into the lumen (hollow center) of lignocellulosic fibers to hydrolyze the hemicellulose and cellulose to produce sugars and oligomers, and then uses cycles of vacuum pressure to pump these homogeneous reagents and sugars and oligomers into and out of the lumen. These reagents are homogenized by mixing the reagents with process water using turbulent mixing to produce a homogeneous reagent. The sugars may be fermented, such as with yeast, to a fermentation product, such as ethanol or butanol.Type: GrantFiled: October 27, 2015Date of Patent: August 30, 2016Inventor: Edward Brian Hamrick
-
Publication number: 20160097062Abstract: A method for fermenting carbohydrate-rich crops is provided. Sugar beet, sugar cane, sweet sorghum, tropical maize hybrids and fruits are rich in simple sugars; potato, sweet potato, cassava and yam are rich in starch; and Jerusalem artichoke is rich in inulin. This method uses vacuum infusion to infuse yeast into the intercellular space (apoplast) of the parenchyma tissue. The simple sugars diffuse into the apoplast, come into contact with the yeast and produce ethanol. Ethanol can be extracted from the crop by vacuum stripping or crushing or can be left inside the starchy crop to preserve it. In some variants, pectinase enzymes degrade the parenchyma cell walls to speed up diffusion of simple sugars to the yeast, speed up diffusion of amylase to starch granules or speed up diffusion of inulinase to insoluble inulin.Type: ApplicationFiled: December 11, 2015Publication date: April 7, 2016Inventor: Edward Brian HAMRICK
-
Publication number: 20160068870Abstract: A method for fermenting carbohydrate-rich crops is provided. Sugar beet, sugar cane, sweet sorghum, tropical maize hybrids and fruits are rich in simple sugars; potato, sweet potato, cassava and yam are rich in starch; and Jerusalem artichoke is rich in inulin. This method uses vacuum infusion to infuse yeast into the intercellular space (apoplast) of the parenchyma tissue. The simple sugars diffuse into the apoplast, come into contact with the yeast and produce ethanol. Ethanol can be extracted from the crop by vacuum stripping or crushing or can be left inside the starchy crop to preserve it. In some variants, pectinase enzymes degrade the parenchyma cell walls to speed up diffusion of simple sugars to the yeast, speed up diffusion of amylase to starch granules or speed up diffusion of inulinase to insoluble inulin.Type: ApplicationFiled: November 13, 2015Publication date: March 10, 2016Inventor: Edward Brian HAMRICK
-
Publication number: 20160046966Abstract: A method for producing fermentation products from lignocellulosic biomass is provided. Lignocellulosic biomass is composed of lignocellulosic fibers which are hollow and primarily contain cellulose, hemicellulose and lignin. Lignin is concentrated in the outer fiber wall and glues the fibers into bundles, but the inner fiber wall has a much lower concentration of lignin and has more easily accessible cellulose and hemicellulose. This method uses vacuum infusion to infuse enzymes into the lumen (hollow center) of lignocellulosic fibers to hydrolyze the hemicellulose and cellulose to produce sugars and oligomers, and then uses cycles of vacuum pressure to pump these homogeneous reagents and sugars and oligomers into and out of the lumen. These reagents are homogenized by mixing the reagents with process water using turbulent mixing to produce a homogeneous reagent. The sugars may be fermented, such as with yeast, to a fermentation product, such as ethanol or butanol.Type: ApplicationFiled: October 27, 2015Publication date: February 18, 2016Inventor: Edward Brian HAMRICK
-
Patent number: 9194012Abstract: A method for producing sugars from lignocellulosic biomass is provided. Lignocellulosic biomass is composed of lignocellulosic fibers which are hollow and primarily contain cellulose, hemicellulose and lignin. Lignin is concentrated in the outer fiber wall and glues the fibers into bundles, but the inner fiber wall has a much lower concentration of lignin and has more easily accessible cellulose and hemicellulose. This method uses vacuum infusion to infuse homogeneous reagents into the lumen (hollow center) of lignocellulosic fibers to hydrolyze the hemicellulose and cellulose to produce sugars and oligomers, and then uses cycles of vacuum pressure to pump these homogeneous reagents and sugars and oligomers into and out of the lumen. Some types of reagents are dilute acids, cellulase enzymes, hemicellulase enzymes, Fenton or Fenton-like reagents, and hydrogen peroxide. These reagents are homogenized by mixing the reagents with process water using turbulent mixing to produce a homogeneous reagent.Type: GrantFiled: January 28, 2015Date of Patent: November 24, 2015Inventor: Edward Brian Hamrick
-
Publication number: 20150218663Abstract: A method for producing sugars from lignocellulosic biomass is provided. Lignocellulosic biomass is composed of lignocellulosic fibers which are hollow and primarily contain cellulose, hemicellulose and lignin. Lignin is concentrated in the outer fiber wall and glues the fibers into bundles, but the inner fiber wall has a much lower concentration of lignin and has more easily accessible cellulose and hemicellulose. This method uses vacuum infusion to infuse homogeneous reagents into the lumen (hollow center) of lignocellulosic fibers to hydrolyze the hemicellulose and cellulose to produce sugars and oligomers, and then uses cycles of vacuum pressure to pump these homogeneous reagents and sugars and oligomers into and out of the lumen. Some types of reagents are dilute acids, cellulase enzymes, hemicellulase enzymes, Fenton or Fenton-like reagents, and hydrogen peroxide. These reagents are homogenized by mixing the reagents with process water using turbulent mixing to produce a homogeneous reagent.Type: ApplicationFiled: January 28, 2015Publication date: August 6, 2015Inventor: Edward Brian HAMRICK
-
Publication number: 20080138556Abstract: Multi-ply linerless constructions and related methods of manufacturing the same are disclosed. An example multi-ply linerless construction includes a first layer that has a first face including a first adhesive pattern and a second face including a first release coating. The construction further includes a second layer that has a third face including a second adhesive pattern and a fourth face including a second release coating. The second face and the third face are releasably coupled to releasably couple the first layer and the second layer. Upon a separation of the first layer and the second layer, each of the first layer and the second layer is a form that provides at least one of graphic images, graphic information, textual images or textual information.Type: ApplicationFiled: December 6, 2006Publication date: June 12, 2008Applicant: MOORE WALLACE NORTH AMERICA, INC.Inventors: David R. Emmert, Brian Hamrick, John T. Soma