Patents by Inventor Brian J. Bollinger

Brian J. Bollinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120829
    Abstract: A load control device for controlling power delivered from an AC power source to an electrical load may have a closed-loop gate drive circuit for controlling a semiconductor switch of a controllably conductive device. The controllably conductive device may be coupled in series between the source and the load. The gate drive circuit may generate a target signal in response to a control circuit. The gate drive circuit may shape the target signal over a period of time and may increase the target signal to a predetermined level after the period of time. The gate drive circuit may receive a feedback signal that indicates a magnitude of a load current conducted through the semiconductor switch. The gate drive circuit may generate a gate control signal in response to the target signal and the feedback signal, and render the semiconductor switch conductive and non-conductive in response to the gate control signal.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 11, 2024
    Applicant: Lutron Technology Company LLC
    Inventors: Brian J. Bollinger, Venkatesh Chitta, Firozbabu Cholashari, Jonathan Waldron
  • Patent number: 11894764
    Abstract: A load control device for controlling power delivered from an AC power source to an electrical load may have a closed-loop gate drive circuit for controlling a semiconductor switch of a controllably conductive device. The controllably conductive device may be coupled in series between the source and the load. The gate drive circuit may generate a target signal in response to a control circuit. The gate drive circuit may shape the target signal over a period of time and may increase the target signal to a predetermined level after the period of time. The gate drive circuit may receive a feedback signal that indicates a magnitude of a load current conducted through the semiconductor switch. The gate drive circuit may generate a gate control signal in response to the target signal and the feedback signal, and render the semiconductor switch conductive and non-conductive in response to the gate control signal.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: February 6, 2024
    Assignee: Lutron Technology Company LLC
    Inventors: Brian J. Bollinger, Venkatesh Chitta, Firozbabu Cholashari, Jonathan Waldron
  • Publication number: 20230125864
    Abstract: A load control device for controlling power delivered from an AC power source to an electrical load may have a closed-loop gate drive circuit for controlling a semiconductor switch of a controllably conductive device. The controllably conductive device may be coupled in series between the source and the load. The gate drive circuit may generate a target signal in response to a control circuit. The gate drive circuit may shape the target signal over a period of time and may increase the target signal to a predetermined level after the period of time. The gate drive circuit may receive a feedback signal that indicates a magnitude of a load current conducted through the semiconductor switch. The gate drive circuit may generate a gate control signal in response to the target signal and the feedback signal, and render the semiconductor switch conductive and non-conductive in response to the gate control signal.
    Type: Application
    Filed: December 27, 2022
    Publication date: April 27, 2023
    Applicant: Lutron Technology Company LLC
    Inventors: Brian J. Bollinger, Venkatesh Chitta, Firozbabu Cholashari, Jonathan Waldron
  • Patent number: 11569733
    Abstract: A load control device for controlling power delivered from an AC power source to an electrical load may have a closed-loop gate drive circuit for controlling a semiconductor switch of a controllably conductive device. The controllably conductive device may be coupled in series between the source and the load. The gate drive circuit may generate a target signal in response to a control circuit. The gate drive circuit may shape the target signal over a period of time and may increase the target signal to a predetermined level after the period of time. The gate drive circuit may receive a feedback signal that indicates a magnitude of a load current conducted through the semiconductor switch. The gate drive circuit may generate a gate control signal in response to the target signal and the feedback signal, and render the semiconductor switch conductive and non-conductive in response to the gate control signal.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: January 31, 2023
    Assignee: Lutron Technology Company LLC
    Inventors: Brian J. Bollinger, Venkatesh Chitta, Firozbabu Cholashari, Jonathan Waldron
  • Publication number: 20200366188
    Abstract: A load control device for controlling power delivered from an AC power source to an electrical load may have a closed-loop gate drive circuit for controlling a semiconductor switch of a controllably conductive device. The controllably conductive device may be coupled in series between the source and the load. The gate drive circuit may generate a target signal in response to a control circuit. The gate drive circuit may shape the target signal over a period of time and may increase the target signal to a predetermined level after the period of time. The gate drive circuit may receive a feedback signal that indicates a magnitude of a load current conducted through the semiconductor switch. The gate drive circuit may generate a gate control signal in response to the target signal and the feedback signal, and render the semiconductor switch conductive and non-conductive in response to the gate control signal.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 19, 2020
    Applicant: Lutron Technology Company LLC
    Inventors: Brian J. Bollinger, Venkatesh Chitta, Firozbabu Cholashari, Jonathan Waldron