Patents by Inventor Brian J. Cox

Brian J. Cox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230240705
    Abstract: A method and apparatus for treating a clot in the blood vessel of a patient, and particularly the treatment of a pulmonary embolism is disclosed. The treatment includes restoring flow through the clot followed by clot removal, either partially or substantially completely. The clot treatment device is expandable into the blood vessel and may contain radial extensions that assist in restoring flow as well as in removing clot material.
    Type: Application
    Filed: March 28, 2023
    Publication date: August 3, 2023
    Inventors: Robert F. Rosenbluth, Brian J. Cox, Paul Lubock, Richard Quick
  • Publication number: 20230240706
    Abstract: A method and apparatus for treating a clot in the blood vessel of a patient, and particularly the treatment of a pulmonary embolism is disclosed. The treatment includes restoring flow through the clot followed by clot removal, either partially or substantially completely. The clot treatment device is expandable into the blood vessel and may contain radial extensions that assist in restoring flow as well as in removing clot material.
    Type: Application
    Filed: March 28, 2023
    Publication date: August 3, 2023
    Inventors: Robert F. Rosenbluth, Brian J. Cox, Paul Lubock, Richard Quick
  • Publication number: 20230223665
    Abstract: A battery system is described with methods and systems for thermally isolating a battery module experiencing thermal runaway. In one embodiment, a thermal actuator can cut a busbar coupling neighboring battery modules together, thereby preventing or slowing the spread of thermal runaway. In other embodiments, a fusible material can joint portions of a busbar. High temperatures can cause the fusible material to melt off of the busbar portions and thereby break the thermal or electrical conductivity between busbar portions and neighboring modules.
    Type: Application
    Filed: January 11, 2022
    Publication date: July 13, 2023
    Applicant: Bell Textron Inc.
    Inventors: Yue Fan, Michael R. Hull, Charles E. Covington, Brian J. Cox
  • Publication number: 20230218313
    Abstract: A method and apparatus for treating a clot in the blood vessel of a patient, and particularly the treatment of a pulmonary embolism is disclosed. The treatment includes restoring flow through the clot followed by clot removal, either partially or substantially completely. The clot treatment device is expandable into the blood vessel and may contain radial extensions that assist in restoring flow as well as in removing clot material.
    Type: Application
    Filed: March 16, 2023
    Publication date: July 13, 2023
    Inventors: Robert F. Rosenbluth, Brian J. Cox, Paul Lubock, Richard Quick
  • Patent number: 11648028
    Abstract: A method and apparatus for treating a clot in the blood vessel of a patient, and particularly the treatment of a pulmonary embolism is disclosed. The treatment includes restoring flow through the clot followed by clot removal, either partially or substantially completely. The clot treatment device is expandable into the blood vessel and may contain radial extensions that assist in restoring flow as well as in removing clot material.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: May 16, 2023
    Assignee: Inari Medical, Inc.
    Inventors: Robert F. Rosenbluth, Brian J. Cox, Paul Lubock, Richard Quick
  • Publication number: 20230107778
    Abstract: Intrasaccular devices and methods of implanting the devices in an aneurysm are described. The device includes an expandable body comprising a plurality of elongate filamentary elements each having a first and a second end. Each of the plurality of elongate filamentary elements extends from a first end of the device to a second end of the device and back to the first end of the device. The first and second ends of each of the plurality of elongate members are coupled at the first end of the device in a hub. The device may further include a defect spanning structure made of a mesh.
    Type: Application
    Filed: December 8, 2022
    Publication date: April 6, 2023
    Inventors: Brian J. Cox, Dean Schaefer, Robert F. Rosenbluth
  • Publication number: 20230070120
    Abstract: A system and method for managing an occlusion, such as a blood clot, within a lumen or passageway of a patient. More particularly, a system and method for rapidly restoring blood flow through an occlusion including a self-expanding, tubular member through which blood may flow when in an expanded state. The tubular member has a structure configured to engage the occlusive material, thereby allowing for extraction of at least a portion of the occlusive material. The system may further employ a material extraction member that is deployed distally of the tubular member.
    Type: Application
    Filed: October 31, 2022
    Publication date: March 9, 2023
    Inventors: Brian J. Cox, Paul Lubock, Robert F. Rosenbluth
  • Publication number: 20230002943
    Abstract: Methods of braiding using a braiding mechanism are described. The braiding mechanism includes a disc defining a plane and a circumferential edge, a mandrel extending from a center of the disc that is adapted to hold a plurality of filaments extending radially from the mandrel toward the circumferential edge of the disc, a plurality of catch mechanisms positioned circumferentially around the edge of the disc, a plurality of actuators adapted to move the plurality of catch mechanisms in a substantially radial direction relative to the circumferential edge of the disc, and a plurality of filaments extending radially from the mandrel towards circumferential edge of the disc. A middle portion of each filament of the plurality of filaments contacts an end of the mandrel.
    Type: Application
    Filed: June 2, 2022
    Publication date: January 5, 2023
    Inventors: James M. Thompson, Brian J. Cox, Robert Rosenbluth, Philippe Marchand, John Nolting, Darrin J. Kent, Tan Q. Dinh, Hung P. Tran, James A. Milburn
  • Publication number: 20220388628
    Abstract: An aircraft includes a fuselage airframe and a wing airframe that is subject to flight loads. The fuselage airframe includes fore/aft floor beams having a plurality of floor intercostals laterally extending therebetween and fore/aft roof beams with a plurality of roof intercostals laterally extending therebetween. Each of a plurality of cabin frames extends generally vertically between respective floor and roof beams. The wing airframe includes forward and aft wing spars with a plurality of wing ribs extending therebetween. At least one fuel tank, that is configured to contain a pressurized fuel such as pressurized hydrogen fuel, integrally forms at least a portion of one of the beams, the intercostals, the frames, the spars and/or the ribs such that the fuel tank is subject to the flight loads.
    Type: Application
    Filed: June 7, 2021
    Publication date: December 8, 2022
    Applicant: Textron Innovations Inc.
    Inventors: Bradley P. Regnier, Zachary E. Dailey, Aaron Alexander Acee, Brian J. Cox
  • Publication number: 20220362512
    Abstract: Catheter shafts and associated devices, systems, and methods are disclosed herein. A representative catheter in accordance with an embodiment of the disclosure includes a generally tubular outer structure and an inner structure surrounded by the outer structure. The inner structure surrounds a catheter lumen. The inner structure includes over-lapping edges such that, when the catheter is bent along its longitudinal axis, the over-lapping edges move relative to one another.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 17, 2022
    Inventors: Richard Quick, Brian J. Cox
  • Patent number: 11433218
    Abstract: Catheter shafts and associated devices, systems, and methods are disclosed herein, A representative catheter in accordance with an embodiment of the disclosure includes a generally tubular outer structure and an inner structure surrounded by the outer structure. The inner structure surrounds a catheter lumen. The inner structure includes over-lapping edges such that, when the catheter is bent along its longitudinal axis, the over-lapping edges move relative to one another.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: September 6, 2022
    Assignee: Inari Medical, Inc.
    Inventors: Richard Quick, Brian J. Cox
  • Publication number: 20220211400
    Abstract: A system and method for managing an occlusion, such as a blood clot, within a lumen or passageway of a patient. More particularly, a system and method for rapidly restoring blood flow through an occlusion including a self-expanding, tubular member through which blood may flow when in an expanded state. The tubular member has a structure configured to engage the occlusive material, thereby allowing for extraction of at least a portion of the occlusive material. The system may further employ a material extraction member that is deployed distally of the tubular member.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 7, 2022
    Inventors: Brian J. Cox, Paul Lubock, Robert F. Rosenbluth
  • Patent number: 11352724
    Abstract: Methods of braiding using a braiding mechanism are described. The braiding mechanism includes an array of filament engagement elements, a mandrel extending from the center of the circular array, a plurality of actuators disposed operably about the array, and a rotating mechanism adapted to rotate one or more filaments. The plurality of filaments are loaded onto the mandrel by looping a middle portion of each filament of the plurality of filaments over an end of the mandrel and extend radially toward and contact the circumferential edge of the circular array of filament engagement elements. The plurality of actuators are operated to engage a first subset of the plurality of filaments and move the engaged filaments in a generally radial direction to a position beyond the circumferential edge of the array. The rotating mechanism is operated to move the engaged filaments about the mandrel axis.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: June 7, 2022
    Assignee: SEQUENT MEDICAL, INC.
    Inventors: James M. Thompson, Brian J. Cox, Robert Rosenbluth, Philippe Marchand, John Nolting, Darrin J. Kent, Tan Q. Dinh, Hung P. Tran, James A. Millburn
  • Publication number: 20220117607
    Abstract: Methods of implanting a device in the lumen of a blood vessel are described. The method includes providing a microcatheter and a device. The device includes a first hub, a second hub, a support structure including a plurality of struts disposed between the first hub and the second hub, and a layer of material disposed over the plurality of struts. The support structure has a low profile, radially constrained state with an elongated tubular configuration suitable for delivery from a microcatheter. The support structure also has an expanded state, a smooth outer surface, and has an axially shortened configuration relative to the radially constrained state. The microcatheter is advanced to a region of interest within the blood vessel. The support structure is advanced through the lumen of and out the distal end of the microcatheter where it expands to the expanded state.
    Type: Application
    Filed: November 4, 2021
    Publication date: April 21, 2022
    Inventors: Brian J. Cox, Dean Schaefer, Robert F. Rosenbluth
  • Patent number: 11304701
    Abstract: A vascular occlusion device includes a braided filament mesh structure defining a longitudinal axis. The mesh structure has a relaxed configuration in which it has an axial array of radially-extending occlusion regions, each of which has a proximal side and a distal side meeting at a peripheral edge, the sides of each occlusion region forming a first angle relative to the longitudinal axis. Each occlusion region is axially separated from the adjacent occlusion region by a reduced-diameter connecting region. The mesh structure is radially compressible to a compressed state in which it is deployed intravascularly to a target site through a catheter. Upon deployment, the device radially expands to a constrained configuration in which the peripheral edges of the occlusion regions engage the vascular wall, and the sides of the occlusion regions form a second angle relative to the longitudinal axis that is smaller than the first angle.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: April 19, 2022
    Assignee: Inceptus Medical, LLC
    Inventors: Paul Lubock, Richard Quick, Robert Rosenbluth, Brian J. Cox
  • Patent number: 11298137
    Abstract: In a system and method for deployment of an implant device, the implant device includes a first loop at its proximal end, and a deployment tool has a second loop attached at its distal end. A release wire slidably disposed within the deployment tool has a distal end extending through the first and second loops to releasably couple the implant device to the deployment tool, and a proximal portion extending from a proximal end of the deployment tool, which is held in a retraction device. The retraction device is operable to hold the proximal end of the deployment tool and to pull the release wire proximally through the deployment tool until the distal end of the release wire is withdrawn from the first and second loops to decouple the implant device from the deployment tool.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: April 12, 2022
    Assignee: INCEPTUS MEDICAL LLC
    Inventors: Martin Shabaz, Claudio Plaza, Richard Quick, Paul Lubock, Brian J. Cox
  • Publication number: 20220031335
    Abstract: A vascular occlusion device includes a braided filament mesh structure defining a longitudinal axis. The mesh structure has a relaxed configuration in which it has an axial array of radially-extending occlusion regions, each of which has a proximal side and a distal side meeting at a peripheral edge, the sides of each occlusion region forming a first angle relative to the longitudinal axis. Each occlusion region is axially separated from the adjacent occlusion region by a reduced-diameter connecting region. The mesh structure is radially compressible to a compressed state in which it is deployed intravascularly to a target site through a catheter. Upon deployment, the device radially expands to a constrained configuration in which the peripheral edges of the occlusion regions engage the vascular wall, and the sides of the occlusion regions form a second angle relative to the longitudinal axis that is smaller than the first angle.
    Type: Application
    Filed: October 13, 2021
    Publication date: February 3, 2022
    Inventors: Paul Lubock, Richard Quick, Robert Rosenbluth, Brian J. Cox
  • Publication number: 20220022898
    Abstract: A device and method for intravascular treatment of an embolism, and particularly a pulmonary embolism, is disclosed herein. One aspect of the present technology, for example, is directed toward a clot treatment device that includes a support member having a plurality of first clot engagement members and second clot engagement members positioned about the circumference of a distal portion of the support member. In an undeployed state, individual first clot engagement members can be linear and have a first length, and individual second clot engagement members can be linear and have a second length that is less than the first length. The clot engagement members can be configured to penetrate clot material along an arcuate path and hold clot material to the clot treatment device.
    Type: Application
    Filed: June 24, 2021
    Publication date: January 27, 2022
    Inventors: Brian J. Cox, Paul Lubock, Robert Rosenbluth, Richard Quick, Philippe Marchand
  • Publication number: 20220015798
    Abstract: Systems and methods for removal of thrombus from a blood vessel in a body of a patient are disclosed herein. The method can include: providing a thrombus extraction device including a proximal self-expanding member formed of a unitary fenestrated structure, a distal substantially cylindrical portion formed of a net-like filament mesh structure, and an inner shaft member connected to a distal end of the net-like filament mesh structure; advancing a catheter constraining the thrombus extraction device through a vascular thrombus, deploying the thrombus extraction; retracting the thrombus extraction device to separate a portion of the thrombus from the vessel wall and to capture the portion of the thrombus within the net-like filament mesh structure; and withdrawing the thrombus extraction device from the body to remove thrombus from the patient.
    Type: Application
    Filed: June 29, 2021
    Publication date: January 20, 2022
    Inventors: Phil Marchand, John C. Thress, Jacob F. Louw, Brian J. Cox, Richard Quick
  • Patent number: 11179159
    Abstract: Methods of implanting a device in the lumen of a blood vessel are described. The method includes providing a microcatheter and a device. The device includes a first hub, a second hub, a support structure including a plurality of struts disposed between the first hub and the second hub, and a layer of material disposed over the plurality of struts. The support structure has a low profile, radially constrained state with an elongated tubular configuration suitable for delivery from a microcatheter. The support structure also has an expanded state, a smooth outer surface, and has an axially shortened configuration relative to the radially constrained state. The microcatheter is advanced to a region of interest within the blood vessel. The support structure is advanced through the lumen of and out the distal end of the microcatheter where it expands to the expanded state.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: November 23, 2021
    Assignee: SEQUENT MEDICAL, INC.
    Inventors: Brian J. Cox, Dean Schaefer, Robert F. Rosenbluth