Patents by Inventor Brian J. Hamilton

Brian J. Hamilton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8002251
    Abstract: A vibration reduction system is provided for use in conjunction with a rotational device including a stationary body, a rotating body, and a first bearing assembly disposed between the stationary body and the rotating body. The vibration reduction system includes a first plurality of bearing mount actuators residing between the stationary body and the first bearing assembly. The first plurality of bearing mount actuators is configured to adjust the radial position of the first bearing assembly. The vibration reduction system further includes a vibration sensor, which is coupled to the stationary body, and a controller, which is coupled to the vibration sensor and to the first plurality of bearing mount actuators. The controller is configured to reduce vibrations sensed by the vibration sensor by selectively adjusting the radial position of the first bearing assembly utilizing the first plurality of bearing mount actuators.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: August 23, 2011
    Assignee: Honeywell International Inc.
    Inventors: Timothy A. Hindle, Toren S. Davis, Brian J. Hamilton, Robert E. Winkel
  • Patent number: 7953523
    Abstract: Apparatus, Systems, and Methods are provided for controlling motion of a spacecraft. One apparatus includes a non-contacting actuator and a passive mechanical system coupled in parallel with one another. A system includes a payload, a bus, and a hybrid actuator including a non-contacting actuator and a passive mechanical system coupled in parallel, and coupled between the bus and the payload. The system also includes an inertial actuator configured to maneuver the bus to maintain a relative position and/or attitude of the bus with respect to the payload. One method includes receiving a signal instructing a first controller to change the position and/or attitude of a payload and utilizing a hybrid system to change the position and/or attitude of the payload. The method also includes receiving the signal at a second controller and utilizing a system to change a position and/or attitude of the bus independent of the payload.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: May 31, 2011
    Assignee: Honeywell International Inc.
    Inventors: Timothy A. Hindle, Brian J. Hamilton, Louis R. Jackson
  • Patent number: 7805226
    Abstract: A control system for adjusting the attitude of a spacecraft comprises a set of control moment gyroscopes (CMGs) configured to allow null space maneuvering. The control system further comprises a momentum actuator control processor coupled to the set of CMGs and configured to determine a mandatory null space maneuver to avoid singularities and determine an optional null space maneuver to increase available torque. The mandatory null space maneuver can be calculated based upon certain gimbal angles, and can be implemented by augmenting the inverse-Jacobian control matrix.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 28, 2010
    Assignee: Honeywell International Inc.
    Inventors: Brian J. Hamilton, Brian K. Underhill
  • Patent number: 7702651
    Abstract: Methods and apparatus for converting a date using spatial information. In one implementation, a method of converting date information using spatial information includes: storing date information in a storage format; receiving target spatial information; retrieving a target format indicator matching the received target spatial information, where the retrieved target format indicator indicates a target format based on a target calendar system; and converting the date information from the storage format to the target format.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: April 20, 2010
    Assignee: Teradata US, Inc.
    Inventors: Matthew Dickey, Brian J. Hamilton, Diane M. Wewerka
  • Patent number: 7693619
    Abstract: A control system of a spacecraft for controlling two or more sets of collinear control moment gyroscopes (CMGs) comprises an attitude control system. The attitude control system is configured to receive a command to adjust an orientation of the spacecraft, determine an offset for a momentum disk for each of the two or more sets of CMGs that maximizes torque, determine a momentum needed from the two or more sets of CMGs to adjust the orientation of the spacecraft, and calculate a total torque needed by taking the derivative of the momentum. The control system further comprises a momentum actuator control processor coupled to the attitude control system, the momentum actuator control processor configured to calculate a required gimbal movement for each of the CMGs in each of the two or more sets of collinear CMGs from total torque.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: April 6, 2010
    Assignee: Honeywell International Inc.
    Inventors: Michael R. Elgersma, Daniel P. Johnson, Mason A. Peck, Brian K. Underhill, Gunter Stein, Blaise G. Morton, Brian J. Hamilton
  • Publication number: 20090121399
    Abstract: A vibration reduction system is provided for use in conjunction with a rotational device including a stationary body, a rotating body, and a first bearing assembly disposed between the stationary body and the rotating body. The vibration reduction system includes a first plurality of bearing mount actuators residing between the stationary body and the first bearing assembly. The first plurality of bearing mount actuators is configured to adjust the radial position of the first bearing assembly. The vibration reduction system further includes a vibration sensor, which is coupled to the stationary body, and a controller, which is coupled to the vibration sensor and to the first plurality of bearing mount actuators. The controller is configured to reduce vibrations sensed by the vibration sensor by selectively adjusting the radial position of the first bearing assembly utilizing the first plurality of bearing mount actuators.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Timothy A. Hindle, Toren S. Davis, Brian J. Hamilton, Robert E. Winkel
  • Publication number: 20080228332
    Abstract: Apparatus, Systems, and Methods are provided for controlling motion of a spacecraft. One apparatus includes a non-contacting actuator and a passive mechanical system coupled in parallel with one another. A system includes a payload, a bus, and a hybrid actuator including a non-contacting actuator and a passive mechanical system coupled in parallel, and coupled between the bus and the payload. The system also includes an inertial actuator configured to maneuver the bus to maintain a relative position and/or attitude of the bus with respect to the payload. One method includes receiving a signal instructing a first controller to change the position and/or attitude of a payload and utilizing a hybrid system to change the position and/or attitude of the payload. The method also includes receiving the signal at a second controller and utilizing a system to change a position and/or attitude of the bus independent of the payload.
    Type: Application
    Filed: March 16, 2007
    Publication date: September 18, 2008
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Timothy A. Hindle, Brian J. Hamilton, Louis R. Jackson
  • Publication number: 20080105787
    Abstract: A control system for adjusting the attitude of a spacecraft comprises a set of control moment gyroscopes (CMGs) configured to allow null space maneuvering. The control system further comprises a momentum actuator control processor coupled to the set of CMGs and configured to determine a mandatory null space maneuver to avoid singularities and determine an optional null space maneuver to increase available torque. The mandatory null space maneuver can be calculated based upon certain gimbal angles, and can be implemented by augmenting the inverse-Jacobian control matrix.
    Type: Application
    Filed: September 29, 2006
    Publication date: May 8, 2008
    Inventors: Brian J. Hamilton, Brian K. Underhill
  • Patent number: 7246776
    Abstract: The present method provides a method for avoiding singularities in the movement of CMGs in an array of CMGs in a spacecraft. In a first step, a torque command representing a desired torque to produce an attitude adjustment for the spacecraft is received. Next, a range-space gimbal rate required to produce the desired torque based on the desired torque and a Jacobian matrix is calculated. Then, a null-space gimbal rate that assists in the avoidance of singularities is calculated. The total gimbal rate command is determined by summing the range-space gimbal rate and the null-space gimbal rate. Then, the total gimbal rate command is provided to the CMGs to produce the total gimbal rate.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: July 24, 2007
    Assignee: Honeywell International, Inc.
    Inventors: Mason A. Peck, Brian J. Hamilton, Brian Underhill
  • Patent number: 7014150
    Abstract: A momentum-control system for a spacecraft is disclosed. The momentum-control system comprises an attitude-control system. The attitude-control system receives data concerning a desired spacecraft maneuver and determines a torque command to complete the desired spacecraft maneuver. A momentum actuator control processor coupled to the attitude-control system receives the torque command. The momentum actuator control processor calculates a gimbal rate command comprising a range-space gimbal rate required to produce the torque command and a null-space gimbal rate required to maximize the ability to provide torque in the direction of a current torque. At least four control-moment gyros are coupled to the momentum control actuator control processor. Each of the control-moment gyros receives and executes the gimbal rate to produce the desired maneuver.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: March 21, 2006
    Assignee: Honeywell International Inc.
    Inventors: Mason A. Peck, Brian J. Hamilton, Brian Underhill
  • Patent number: 6598025
    Abstract: An inventory-management system includes data-collection terminals that acquire product-identification data identifying products placed on store shelves, product-placement data identifying the locations of the products in the store, and sales data providing information about sales of the products. The system also includes a database that receives and stores the product-identification, product-placement, and product sales data collected by the terminals. A database-query component queries the database to identify relationships between product sales and product placement.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: July 22, 2003
    Assignee: NCR Corporation
    Inventors: Brian J. Hamilton, Diane M. Wewerka
  • Patent number: 5980442
    Abstract: A novel food server and method of producing a food server is disclosed. The novel method includes moving a web of paper at a constant rate of speed, rotary perforating a plurality of lines on the moving web, using rotary timing belts to score at least two fold lines on the moving web, where the two fold lines define two glue flaps, rotary die-cutting the moving web to cut away portions of the paper adjacent the glue flaps, plow folding the moving web along the two fold lines defining the glue flaps, and applying glue to the moving web. After plow folding along the fold lines and applying the glue, the moving web is cross cut to form a blank having the glue flaps. Then, the blank is vacuum folded to cause portions of the blank to contact and adhere to the glue flaps, thereby forming the food server from the blank. The novel food server includes a first panel having two side flaps each defined by a score line, and a second panel having two side flaps each defined by a score line.
    Type: Grant
    Filed: June 10, 1997
    Date of Patent: November 9, 1999
    Inventors: James T. Hamilton, Brian J. Hamilton, David A. Hamilton
  • Patent number: 4848525
    Abstract: A dual mode vibration isolator for reducing transmission of vibrations between a forward body and an aft body includes a mounting member positioned between the forward and aft bodies, a plurality of magnetic actuators each having an armature fixed to the forward body and a stator mounted on the mounting member, and a plurality of linear actuators pivotally connected between the aft body and the mounting member. The magnetic actuators support the forward body relative to the mounting member by magnetically supporting the armatures between paired stator cores in each stator. The magnetic actuators are controlled, preferably through local flux feedback loops, to permit the stators to vibrate relative to the armature without transmitting forces to the armatures, thus isolating the vibration of the aft body and mounting member from the forward body. The linear actuators extend and contract to reposition the forward body and mounting member relative to the aft body.
    Type: Grant
    Filed: November 2, 1987
    Date of Patent: July 18, 1989
    Assignee: The Boeing Company
    Inventors: A. Dean Jacot, Brian J. Hamilton, David C. Cunningham, L. Porter Davis
  • Patent number: 4629262
    Abstract: An apparatus for providing a signal representative of armature displacement in a magnetic bearing assembly for a magnetic suspension system, of the type having a force sensor applied in a closed loop to provide a linear response with respect to an input force command signal. Signals representative of currents applied to the magnetizing coils and of the sensed force are used to derive the armature displacement signal. The signal so derived is applied to modulate the magnetic flux and obviates the need for proximity devices for sensing armature displacement. A circuit for generating the armature displacement signal is provided.
    Type: Grant
    Filed: June 24, 1985
    Date of Patent: December 16, 1986
    Assignee: Sperry Corporation
    Inventor: Brian J. Hamilton