Patents by Inventor Brian J. Koch
Brian J. Koch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230090433Abstract: A vehicle, and a balancing device and method of controlling a state of charge of a reference electrode in a battery. The balancing device includes a measurement circuit and a charging circuit. The measurement circuit is configured to obtain a measurement of a reference voltage of the reference electrode. The charging circuit is configured to adjust the reference voltage based on the measurement. The state of charge of the reference electrode is controlled based on the reference voltage.Type: ApplicationFiled: September 17, 2021Publication date: March 23, 2023Inventors: Brian J. Koch, Jing Gao, Alfred Zhang, Alok Warey, Jason Graetz, Chia-Ming Chang, Daniel M. Zehnder, Patrick J. Webb, Souren Soukiazian
-
Publication number: 20230091154Abstract: Presented are electrochemical devices with in-stack sensor arrays, methods for making/using such electrochemical devices, and lithium-class battery cells with stacked electrode assemblies having in-stack sensor arrays. An electrochemical device includes a device housing that stores an electrolyte composition for conducting ions. An electrode stack, which is located inside the device housing in electrochemical contact with the electrolyte, includes at least two working electrodes. An electrically insulating and ionically transmissive separator is interposed between each neighboring pair of working electrodes. A reference electrode is attached to one side of the separator and connected to multiple electrical sensing devices.Type: ApplicationFiled: September 20, 2021Publication date: March 23, 2023Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Brian J. Koch, Taylor R. Garrick
-
Patent number: 11592493Abstract: A method for battery capacity estimation is provided. The method includes monitoring a sensor, collecting a plurality of data points including a voltage-based state of charge value and an integrated current value, defining within the data points a first data set collected during a first time period and a second data set collected during a second time period, determining an integrated current error related to the second data set, comparing the integrated current error related to the second data set to a threshold integrated current error. When the error related to the second data set exceeds the threshold, the method further includes resetting the second data set based upon an integrated current value from the first time period. The method further includes combining the data sets to create a combined data set and determining a voltage slope capacity estimate as a change in integrated current versus voltage-based state of charge.Type: GrantFiled: January 15, 2020Date of Patent: February 28, 2023Assignee: GM Global Technology Operations LLCInventors: Alfred Zhang, Justin Bunnell, Garrett M. Seeman, Jeffrey S. Piasecki, Charles W. Wampler, Brian J. Koch, Jing Gao, Jeffrey A. Bednar, Xiumei Guo, Justin R. McDade
-
Publication number: 20220407126Abstract: A method of reforming a negative electrode layer of a secondary lithium battery may include execution of a reforming cycle that reforms a major facing surface of the negative electrode layer by eliminating at least a portion of a lithium dendrite or other lithium-containing surface irregularity that has formed on the major facing surface of the negative electrode layer.Type: ApplicationFiled: June 21, 2021Publication date: December 22, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Xingcheng Xiao, Brian J. Koch
-
Patent number: 11525742Abstract: A temperature sensor for a battery cell of a rechargeable battery is described, and includes a resistive sensing element, a first electrode, and a second electrode. The resistive sensing element, the first electrode, and the second electrode are affixed to a porous separator. The porous separator is interposed between an anode and a cathode of the battery cell. The resistive sensing element is electrically connected in series between the first electrode and the second electrode, and the resistive sensing element, the first electrode and the second electrode are affixed onto the separator as film layers, and are porous.Type: GrantFiled: February 12, 2020Date of Patent: December 13, 2022Assignee: GM Global Technology Operations LLCInventors: Alfred Zhang, Gayatri V. Dadheech, Jing Gao, Brian J. Koch
-
Publication number: 20220352507Abstract: A reference electrode for a lithium-ion battery cell in the form of a porous ultrathin film that is fabricated from aluminum or an aluminum alloy is described. The aluminum layer is conductive and functions as a current collector for the reference electrode. The alloying elements may include but not limited to one or more of copper, zinc, silver, gold, titanium, chrome, rare earth metals, etc., to achieve target values for electrical, mechanical and chemical properties. Also disclosed is an electrochemical battery cell having an anode, a cathode, and a reference electrode, wherein the reference electrode is interposed between the anode and the cathode, wherein the reference electrode is an electrode layer that is arranged on a current collector, and wherein the current collector is fabricated from an aluminum alloy.Type: ApplicationFiled: April 29, 2021Publication date: November 3, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Brian J. Koch, Jing Gao, Zhe Li, Yucong Wang
-
Publication number: 20220294038Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.Type: ApplicationFiled: May 24, 2022Publication date: September 15, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing GAO, Brian J. KOCH, Zhe LI, Alfred ZHANG, Gayatri V. DADHEECH
-
Publication number: 20220285748Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.Type: ApplicationFiled: May 24, 2022Publication date: September 8, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing GAO, Brian J. KOCH, Zhe LI, Alfred ZHANG, Gayatri V. DADHEECH
-
Publication number: 20220285747Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.Type: ApplicationFiled: May 24, 2022Publication date: September 8, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing GAO, Brian J. KOCH, Zhe LI, Alfred ZHANG, Gayatri V. DADHEECH
-
Publication number: 20220238932Abstract: A monitoring assembly for an electrochemical cell of a secondary lithium battery includes a porous sensory structure and a transducer. The porous sensory structure includes a sensory layer disposed on a major surface of a porous separator and a buffer layer disposed between the sensory layer and a facing surface of a negative electrode layer. The buffer layer electrically isolates the sensory layer from the facing surface of the negative electrode layer. The sensory layer includes an electrically conductive material and is configured to produce a response to an input signal or to a physical stimulus received within the electrochemical cell. The transducer is configured to process the response produced by the sensory layer to generate an output signal indicative of a diagnostic condition within the electrochemical cell.Type: ApplicationFiled: January 28, 2021Publication date: July 28, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Brian J. Koch, Gayatri V. Dadheech, Mark W. Verbrugge, Alok Warey, James R. Salvador, Robert D. Schmidt
-
Patent number: 11374268Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.Type: GrantFiled: September 20, 2019Date of Patent: June 28, 2022Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Brian J. Koch, Zhe Li, Alfred Zhang, Gayatri V. Dadheech
-
Publication number: 20220181712Abstract: A reference electrode assembly for an electrochemical cell of a secondary lithium ion battery and methods of manufacturing the same. The reference electrode assembly includes a porous membrane having a major surface and a porous reference structure deposited on the major surface of the porous membrane. The porous reference structure includes a porous carbon layer and a porous reference electrode layer that at least partially overlaps the porous carbon layer on the major surface of the porous membrane.Type: ApplicationFiled: December 4, 2020Publication date: June 9, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Gayatri V. Dadheech, Mark W. Verbrugge, Alok Warey, Brian J. Koch, Jing Gao
-
Publication number: 20220134900Abstract: A battery system includes a rechargeable energy storage system and a battery controller. The rechargeable energy storage system has a rapid charging mode and a discharging mode. The battery controller is electrically coupled to the rechargeable energy storage system and is configured to store multiple charging tables that contain multiple charge current limit entries, where each charging table corresponds to a unique one of multiple initial state-of-charge values, determine a starting state-of-charge value of the rechargeable energy storage system in response to entering the rapid charging mode, select up to two charging tables in response to the starting state-of-charge value of the rechargeable energy storage system being adjacent to up to two of the initial state-of-charge values, and control a charging current provided to the rechargeable energy storage system based on the charge current limit entries in the up to two charging tables as selected.Type: ApplicationFiled: October 29, 2020Publication date: May 5, 2022Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Orlando Ward-Santos, Brian J. Koch
-
Patent number: 11303136Abstract: A cell-mounted application specific integrated circuit (ASIC) system for a vehicle includes a battery pack having multiple individual battery cells. An individual cell-mounted application specific integrated circuit (ASIC) is in communication with each of the individual battery cells, with the ASIC drawing power for operation directly from the individual battery cell. A battery control unit is in communication with the ASIC. A central electronics control unit is in communication with the ASIC. The ASIC communicates wirelessly with the battery control unit and the central electronics control unit.Type: GrantFiled: May 13, 2019Date of Patent: April 12, 2022Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Brian J. Koch, Pablo Valencia, Jr., Alok Warey
-
Patent number: 11245105Abstract: A method of manufacturing a component for a reference electrode assembly according to various aspects of the present disclosure includes providing a separator having first and second opposing surfaces. The method further includes sputtering a first current collector layer to the first surface via magnetron or ion beam sputtering deposition. A porosity of the separator is substantially unchanged by the sputtering. In one aspect, the method further includes sputtering a second current collector layer to the second surface via magnetron or ion beam sputtering deposition. In one aspect, the first current collector layer includes nickel and defines a first thickness of greater than or equal to about 200 nm to less than or equal to about 300 nm and the second current collector layer includes gold and defines a second thickness of greater than or equal to about 25 nm to less than or equal to about 100 nm.Type: GrantFiled: September 20, 2019Date of Patent: February 8, 2022Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Gayatri V. Dadheech, Brian J. Koch, Alfred Zhang, Robert S. Conell, Jing Gao
-
Patent number: 11225169Abstract: Management system for a rechargeable energy storage device in an electric vehicle and corresponding method is disclosed. The rechargeable energy storage device has one or more battery packs each having a plurality of modules with one or more respective cells. A respective module management unit is embedded in each of the plurality of modules through respective microcircuits and configured to determine one or more local parameters. A supervisory controller is configured for two-way communication with the respective module management unit. The supervisory controller is configured to receive the local parameters, determine one or more global pack parameters based in part on the local parameters and transmit the global pack parameters back to the respective management unit. The supervisory controller is configured to control operation of the rechargeable energy storage device based in part on the global pack parameters and the local parameters.Type: GrantFiled: November 6, 2019Date of Patent: January 18, 2022Assignee: GM Global Technology Operations LLCInventors: Yue-Yun Wang, Lei Hao, Brian J. Koch, Jeffrey S. Piasecki, Garrett M. Seeman
-
Patent number: 11171385Abstract: A method of forming a separator for a lithium-ion battery includes arranging a polymer film in contact with a sacrificial layer to form a cutting stack. The method includes disposing the cutting stack between a first vitreous substrate and a second vitreous substrate. The method includes applying an infrared laser to the cutting stack through the first vitreous substrate to generate heat at the sacrificial layer. The method also includes transferring heat from the sacrificial layer to the polymer film to thereby cut out a portion of the polymer film and form the separator. A method of cutting a polymer film and a cutting system are also explained.Type: GrantFiled: July 12, 2018Date of Patent: November 9, 2021Assignee: GM Global Technology Operations LLCInventors: Hongliang Wang, Brian J. Koch, Michael P. Balogh, Sean R. Wagner
-
Publication number: 20210273229Abstract: Composite reference electrode substrates and relating methods are provided. The composite reference electrode substrate includes a separator portion and a current collector portion adjacent to the separator portion. A method for forming the reference electrode substrate includes anodizing one or more surfaces of a first side of an aluminum foil so as to form a porous separator portion disposed adjacent to a porous current collector portion. The porous separator portion includes aluminum oxide, and the current collector portion includes the aluminum foil. The separator portion and the current collector portion each have a porosity of greater than or equal to about 10 vol. % to less than or equal to about 80 vol. %.Type: ApplicationFiled: February 27, 2020Publication date: September 2, 2021Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Yucong WANG, Zhe LI, Jing GAO, Brian J. KOCH
-
Patent number: 11091055Abstract: Presented are vehicle charging systems and control logic for provisioning vehicle grid integration (VGI) activities, methods for making/using such charging systems, and electric-drive vehicles with intelligent vehicle charging and VGI capabilities. A method of controlling charging operations of electric-drive vehicles includes a vehicle controller detecting if a vehicle is coupled to an electric vehicle supply equipment (EVSE), and determining if the vehicle's current mileage exceeds a calibrated mileage threshold. Responsive to the vehicle being connected to the EVSE and the vehicle's current mileage exceeding the calibrated mileage threshold, the controller determines the current remaining life of the vehicle's traction battery pack and the current time in service of the vehicle. The vehicle controller determines if the current remaining battery life exceeds a predicted remaining battery life corresponding to the current time in service.Type: GrantFiled: May 10, 2019Date of Patent: August 17, 2021Assignee: GM Global Technology Operations LLCInventors: James E. Tarchinski, Brian J. Koch
-
Publication number: 20210247242Abstract: A temperature sensor for a battery cell of a rechargeable battery is described, and includes a resistive sensing element, a first electrode, and a second electrode. The resistive sensing element, the first electrode, and the second electrode are affixed to a porous separator. The porous separator is interposed between an anode and a cathode of the battery cell. The resistive sensing element is electrically connected in series between the first electrode and the second electrode, and the resistive sensing element, the first electrode and the second electrode are affixed onto the separator as film layers, and are porous.Type: ApplicationFiled: February 12, 2020Publication date: August 12, 2021Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Alfred Zhang, Gayatri V. Dadheech, Jing Gao, Brian J. Koch