Patents by Inventor Brian J. Koch
Brian J. Koch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250096438Abstract: Some embodiments disclosed herein are directed to connectors for thin-film functional separators in battery cells. In accordance with an exemplary embodiment, a thin-film functional separator for a battery cell is provided. The thin-film functional separator may be disposed within the battery cell, such as between a cathode and anode of the battery cell. The thin-film functional separator includes a porous composite membrane that includes a microporous substrate and a coating layer, and includes a lead extending from the porous composite membrane. The lead extending from the porous composite membrane is coupled to an external conductive tab using a mechanical connector that electrically couples the external conductive tab to the lead extending from the porous composite membrane. Other embodiments may be disclosed or claimed.Type: ApplicationFiled: September 19, 2023Publication date: March 20, 2025Inventors: Anne Zhang, Jing Gao, Christine Labaza, Yifan Zhao, Brian J. Koch, Raneen Taha
-
Publication number: 20250096368Abstract: An enclosure for a prismatic battery cell include first side surfaces, second side surfaces connected between the first side surfaces, a top surface connected between the first side surfaces and the second side surfaces, and a bottom surface connected between the first side surfaces and the second side surfaces. The first side surfaces, the second side surfaces, the top surface and the bottom surface are configured to receive a battery cell stack. The second side surfaces, the top surface and the bottom surface expand/contract to allow guided expansion/contraction of the enclosure in a first direction while limiting expansion in second and third directions transverse to the first direction.Type: ApplicationFiled: September 20, 2023Publication date: March 20, 2025Inventors: Lu HUANG, Blair E. Carlson, Charles W. Wampler, II, Jing Gao, Brian J. Koch, Margaux Elise LeBlanc, Jeffrey A. Abell
-
Publication number: 20250079660Abstract: A battery includes multiple stacked cells. Each cell includes an anode layer and a cathode layer separated by a permeable separator. At least one temperature probe structure is disposed on the permeable separator between the anode layer and the cathode layer of a first cell of the stacked cells. The temperature probe structure includes at least a first material partially coating the permeable separator and a second material partially coating the permeable separator. The first material overlaps with the second material at an overlap region. A first sensor output terminal is connected to the first material and a second sensor terminal is connected to the second material. A voltage differential between the first sensor output terminal and the second sensor output terminal corresponds to an average temperature of the overlap region.Type: ApplicationFiled: September 6, 2023Publication date: March 6, 2025Inventors: Jing Gao, Anne Zhang, Brian J. Koch, Xingcheng Xiao, Zhe Li
-
Patent number: 12214224Abstract: A generator comprising an interface and a control circuit is disclosed. The interface is to electrically couple to an ultrasonic surgical instrument comprising a switch. The switch is configurable between a first switch state and a second switch state. The control circuit is to provide a continuous drive signal to the ultrasonic surgical instrument based on the switch being in the first switch state. The control circuit is to provide a pulsed drive signal to the ultrasonic surgical instrument based on the switch being in the second switch state.Type: GrantFiled: December 6, 2023Date of Patent: February 4, 2025Assignee: Cilag GmbH InternationalInventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Foster B. Stulen, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, Jr.
-
Publication number: 20250030134Abstract: Presented are electrochemical devices with in-stack reference electrodes, methods for making/using such devices, and battery cells with stacked electrodes segregated by electrode separator assemblies having built-in reference electrodes. An electrochemical device includes a protective outer housing that contains an ion-conducting electrolyte. A stack of working electrodes is packaged inside the device housing in electrochemical contact with the electrolyte. At least one electrode separator assembly is located inside the housing, interposed between a neighboring pair of these working electrodes. The electrode separator assembly includes an electrically insulating separator sheet with a reference electrode. A tab pocket, which projects from an end of the separator sheet, includes a tab chamber with a chamber opening. An electrode tab is formed with an electrically conductive material and attached to the tab pocket.Type: ApplicationFiled: July 20, 2023Publication date: January 23, 2025Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Brian J. Koch, Zhe Li, Huaxin Li, Anne Zhang
-
Publication number: 20250018830Abstract: A method for controlling charging of a battery to minimize or avoid lithium plating. The method may include charging the battery during with a first charge current having a first charge profile, monitoring charging of the battery with the first charge current, and thereafter charging the battery with a second charge current having a cathode charge profile to prevent a cathode potential of the battery from exceeding a cathode threshold.Type: ApplicationFiled: July 14, 2023Publication date: January 16, 2025Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Brian J. Koch, Jing Gao, Xi Chen
-
Publication number: 20250015375Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.Type: ApplicationFiled: September 17, 2024Publication date: January 9, 2025Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing GAO, Brian J. KOCH, Zhe LI, Alfred ZHANG, Gayatri V. DADHEECH
-
Patent number: 12182990Abstract: A system for inspecting a battery component includes a heating device configured to heat a surface of the battery component to a selected temperature, an optical-visible imaging device configured to take an optical image of the surface, a thermal imaging device configured to take a thermal image of the surface, and a processor configured to acquire the optical image and the thermal image. The processor is configured to correlate the thermal image with the optical image, identify a feature of interest in at least one of the optical image and the thermal image, determine a geometric characteristic and a temperature characteristic associated with the feature of interest, and determine whether the feature of interest is a defect based on the geometric characteristic and the temperature characteristic.Type: GrantFiled: May 13, 2022Date of Patent: December 31, 2024Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Wei Zeng, Scott E. Parrish, Jing Gao, Brian J. Koch, Xingcheng Xiao
-
Patent number: 12148897Abstract: A monitoring assembly for an electrochemical cell of a secondary lithium battery includes a porous sensory structure and a transducer. The porous sensory structure includes a sensory layer disposed on a major surface of a porous separator and a buffer layer disposed between the sensory layer and a facing surface of a negative electrode layer. The buffer layer electrically isolates the sensory layer from the facing surface of the negative electrode layer. The sensory layer includes an electrically conductive material and is configured to produce a response to an input signal or to a physical stimulus received within the electrochemical cell. The transducer is configured to process the response produced by the sensory layer to generate an output signal indicative of a diagnostic condition within the electrochemical cell.Type: GrantFiled: January 28, 2021Date of Patent: November 19, 2024Assignee: GM Global Technology Operations LLCInventors: Jing Gao, Brian J. Koch, Gayatri V. Dadheech, Mark W. Verbrugge, Alok Warey, James R. Salvador, Robert D. Schmidt
-
Patent number: 12113184Abstract: A method of making a reference electrode assembly for an electrochemical cell according to various aspects of the present disclosure includes providing a subassembly including a separator layer and a current collector layer coupled to the separator layer. The method further includes providing an electrode ink including an electroactive material, a binder, and a solvent. The method further includes creating a reference electrode precursor by applying an electroactive precursor layer to the current collector layer. The electroactive precursor layer covers greater than or equal to about 90% of a superficial surface area of a surface of the current collector layer. The electroactive precursor layer includes the electrode ink. The method further includes creating the reference electrode assembly by drying the electroactive precursor layer to remove at least a portion of the solvent, thereby forming an electroactive layer. The electroactive layer is solid and porous.Type: GrantFiled: May 24, 2022Date of Patent: October 8, 2024Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Brian J. Koch, Zhe Li, Alfred Zhang, Gayatri V. Dadheech
-
Publication number: 20240258657Abstract: A vehicle battery includes a pouch cell configured to provide power to at least one power system of a vehicle, and multiple electrode foils stacked together at least partially within the pouch cell. Each of the multiple electrode foils includes a foil extension at an end of the electrode foil, a first group of foil extensions are connected together via a first ultrasonic weld to define a first foil extension weld portion, and a second group of foil extensions are connected together via a second ultrasonic weld to define a second foil extension weld portion.Type: ApplicationFiled: February 1, 2023Publication date: August 1, 2024Inventors: Hui-ping WANG, Hui WANG, Masound MOHAMMADPOUR, Lu HUANG, Jing GAO, Brian J. KOCH
-
Patent number: 12002932Abstract: A method of reforming a negative electrode layer of a secondary lithium battery may include execution of a reforming cycle that reforms a major facing surface of the negative electrode layer by eliminating at least a portion of a lithium dendrite or other lithium-containing surface irregularity that has formed on the major facing surface of the negative electrode layer.Type: GrantFiled: June 21, 2021Date of Patent: June 4, 2024Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Xingcheng Xiao, Brian J. Koch
-
Patent number: 11973200Abstract: A reference electrode assembly for an electrochemical cell of a secondary lithium ion battery and methods of manufacturing the same. The reference electrode assembly includes a porous membrane having a major surface and a porous reference structure deposited on the major surface of the porous membrane. The porous reference structure includes a porous carbon layer and a porous reference electrode layer that at least partially overlaps the porous carbon layer on the major surface of the porous membrane.Type: GrantFiled: December 4, 2020Date of Patent: April 30, 2024Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Gayatri V. Dadheech, Mark W. Verbrugge, Alok Warey, Brian J. Koch, Jing Gao
-
Publication number: 20240072565Abstract: A battery charging system includes a charger that is dynamically controlled during charging, including during rapid charging events that include elevated voltage and/or elevated current levels. The charger is connectable to a battery cell of a rechargeable energy storage system. Operation includes transferring electric power having a charging current at a maximum charging rate to the battery cell. An anode potential offset setpoint is determined. A predicted anode potential offset is determined at an interface between the anode and the separator based upon the cell voltage for the battery cell. The charger is controlled to transfer the electric power to the battery cell based upon a temperature distribution in the battery cell and a difference between the anode potential offset setpoint and the predicted anode potential offset.Type: ApplicationFiled: August 24, 2022Publication date: February 29, 2024Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Han Zhang, Taylor R. Garrick, Brian J. Koch
-
Publication number: 20240061023Abstract: A system for in-situ mapping of electrode potential and thermal distribution is provided. The system includes a test device. The test device includes an anode, a cathode, a reference electrode, a separator disposed between the anode and the cathode, and a voltage potential sensor configured for monitoring a voltage potential at a first position upon one of the anode or the cathode as compared to a voltage potential of the reference electrode. The system further includes an infrared sensor device configured for collecting data describing temperature variation across a surface of one of the anode or the cathode.Type: ApplicationFiled: August 18, 2022Publication date: February 22, 2024Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Brian J. Koch, Taylor R. Garrick, Wei Zeng
-
Publication number: 20230402687Abstract: A battery cell includes an anode, a cathode, a liquid electrolyte, and a battery cell case. The battery cell case is configured to house the anode, the cathode, and the liquid electrolyte and includes a case interior wall arranged proximate one of the anode and the cathode, a battery case ceiling, and a battery case floor catching and collecting the liquid electrolyte due to force of gravity. The case interior wall defines a pattern of surface tension varying between hydrophobic and hydrophilic along the case interior wall between the battery case floor and the battery cell ceiling. The pattern of surface tension thereby facilitates self-propulsion of the liquid electrolyte in opposition to the force of gravity and a predetermined distribution of the liquid electrolyte along the battery cell wall.Type: ApplicationFiled: June 8, 2022Publication date: December 14, 2023Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Brian J. Koch, Yanyan Zhang, Zhe Li, Daniel J. Wilson, Xingcheng Xiao
-
Publication number: 20230402866Abstract: The concepts herein provide a method and associated system for charging a battery, such as a vehicle battery that is part of a propulsion system. The method includes determining a charging current profile for a lithium metal anode of the battery, determining an increasing current charging protocol based upon the charging current profile and charging the battery based upon the increasing current charging protocol.Type: ApplicationFiled: May 18, 2022Publication date: December 14, 2023Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Brian J. Koch
-
Publication number: 20230368367Abstract: A system for inspecting a battery component includes a heating device configured to heat a surface of the battery component to a selected temperature, an optical-visible imaging device configured to take an optical image of the surface, a thermal imaging device configured to take a thermal image of the surface, and a processor configured to acquire the optical image and the thermal image. The processor is configured to correlate the thermal image with the optical image, identify a feature of interest in at least one of the optical image and the thermal image, determine a geometric characteristic and a temperature characteristic associated with the feature of interest, and determine whether the feature of interest is a defect based on the geometric characteristic and the temperature characteristic.Type: ApplicationFiled: May 13, 2022Publication date: November 16, 2023Inventors: Wei Zeng, Scott E. Parrish, Jing Gao, Brian J. Koch, Xingcheng Xiao
-
Patent number: 11813958Abstract: A vehicle, and a balancing device and method of controlling a state of charge of a reference electrode in a battery. The balancing device includes a measurement circuit and a charging circuit. The measurement circuit is configured to obtain a measurement of a reference voltage of the reference electrode. The charging circuit is configured to adjust the reference voltage based on the measurement. The state of charge of the reference electrode is controlled based on the reference voltage.Type: GrantFiled: September 17, 2021Date of Patent: November 14, 2023Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Brian J. Koch, Jing Gao, Alfred Zhang, Alok Warey, Jason Graetz, Chia-Ming Chang, Daniel M. Zehnder, Patrick J. Webb, Souren Soukiazian
-
Publication number: 20230291077Abstract: Presented are electrochemical devices with in-stack reference electrodes, methods for making/using such devices, and battery cells with stacked electrodes segregated by electrode separator assemblies including thermal barriers and built-in reference electrodes. An electrochemical device, such as a lithium-class secondary battery cell, includes an insulated and sealed housing with an ion-conducting electrolyte located inside the housing. A stack of working electrodes is also located inside the device housing, in electrochemical contact with the electrolyte. At least one electrode separator assembly is located inside the device housing, interposed between a neighboring pair of (anode and cathode) working electrodes. The electrode separator assembly includes a separator layer fabricated with an electrically insulating material that is sufficiently porous to transmit therethrough the ions of the electrolyte.Type: ApplicationFiled: March 8, 2022Publication date: September 14, 2023Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Jing Gao, Brian J. Koch, Xingcheng Xiao, Mark W. Verbrugge