Patents by Inventor Brian J. Moss

Brian J. Moss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8764678
    Abstract: A pressure sensor (10 for medical applications comprises a silica optical fiber extrinsic Fabry-Perot interferometric (EFPI) pressure sensor (2) and an in-fiber Bragg grating (FBG, 3). The cavity of the EFPI pressure sensor (2) is formed by the end face of the FBG (3), a glass capillary (5) and a glass diaphragm (6). The glass diaphragm (6) is secured in place by a fusion splice (7) and the glass capillary (5) by a fusion splice (8). As illustrated, incident light is directed into the FBG 3 and there are reflections in the EFPI pressure sensor (2). Applied pressure causes a deflection of the glass diaphragm (6) and hence modulation of the EFPI sensor (2) cavity. The FBG (3) is used as a reference sensor to eliminate temperature cross-sensitivity of the EFPI pressure sensor (2). The EFPI cavity was fabricated using a 200 ?m silica glass fiber, a 133/220 ?m (inner/outer diameter) silica glass capillary and a standard telecommunication FBG.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: July 1, 2014
    Assignee: University of Limerick
    Inventors: Kort Bremer, Gabriel Leen, Elfed Lewis, Brian J. Moss, Steffen Lochmann, Ingo Mueller
  • Publication number: 20110190640
    Abstract: A pressure sensor (10 for medical applications comprises a silica optical fiber extrinsic Fabry-Perot interferometric (EFPI) pressure sensor (2) and an in-fiber Bragg grating (FBG, 3). The cavity of the EFPI pressure sensor (2) is formed by the end face of the FBG (3), a glass capillary (5) and a glass diaphragm (6). The glass diaphragm (6) is secured in place by a fusion splice (7) and the glass capillary (5) by a fusion splice (8). As illustrated, incident light is directed into the FBG 3 and there are reflections in the EFPI pressure sensor (2). Applied pressure causes a deflection of the glass diaphragm (6) and hence modulation of the EFPI sensor (2) cavity. The FBG (3) is used as a reference sensor to eliminate temperature cross-sensitivity of the EFPI pressure sensor (2). The EFPI cavity was fabricated using a 200 ?m silica glass fiber, a 133/220 ?m (inner/outer diameter) silica glass capillary and a standard telecommunication FBG.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 4, 2011
    Inventors: Kort Bremer, Gabriel Leen, Elfed Lewis, Brian J. Moss, Steffen Lochmann, Ingo Mueller