Patents by Inventor Brian K. Vogel

Brian K. Vogel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180232055
    Abstract: Processing techniques and device configurations for performing and controlling output effects at a plurality of wearable devices are generally described herein. In an example, a processing technique may include receiving, at a computing device, an indication of a triggering gesture that occurs at a first wearable device, determining an output effect corresponding to the indication of the triggering gesture, and in response to determining the output effect, transmitting commands to computing devices that are respectively associated with a plurality of wearable devices, the commands causing the plurality of wearable devices to generate the output effect at the plurality of wearable devices. In further examples, output effects such as haptic feedback, light output, or sound output, may be performed by the plurality of wearable devices, associated computing devices, or other controllable equipment.
    Type: Application
    Filed: February 9, 2018
    Publication date: August 16, 2018
    Inventors: Saurin Shah, Narayan Sundararajan, Manan Goel, Brian K. Vogel, Jason Blanchard, Jason Wright, Lakshman Krishnamurthy, Swarnendu Kar
  • Patent number: 9996162
    Abstract: A wearable sensor system is disclosed that provides a measurable magnetic field that changes horizontally within the range of motion of human limbs. The wearable sensor system includes a magnetic sensing device, and one or more magnet devices that provide the measurable magnetic field with a strength exceeding the Earth's magnetic field. To this end, the magnetic sensing system provides a “personal” magnetic field about a user, with that magnetic field traveling with the user and overpowering adjacent interfering fields. The wearable sensor system may include a sensor arrangement that measures a strength of the personal magnetic field and field direction to perform horizontal localization, and may send a representation of a same to a remote computing device to cause an action to occur. Some such actions include output of pre-recorded or synthesized musical notes, for example.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: June 12, 2018
    Assignee: Intel Corporation
    Inventors: Swarnendu Kar, Jeremy Parra, Saurin Shah, Brian K. Vogel
  • Patent number: 9939910
    Abstract: Processing techniques and device configurations for performing and controlling output effects at a plurality of wearable devices are generally described herein. In an example, a processing technique may include receiving, at a computing device, an indication of a triggering gesture that occurs at a first wearable device, determining an output effect corresponding to the indication of the triggering gesture, and in response to determining the output effect, transmitting commands to computing devices that are respectively associated with a plurality of wearable devices, the commands causing the plurality of wearable devices to generate the output effect at the plurality of wearable devices. In further examples, output effects such as haptic feedback, light output, or sound output, may be performed by the plurality of wearable devices, associated computing devices, or other controllable equipment.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: April 10, 2018
    Assignee: Intel Corporation
    Inventors: Saurin Shah, Narayan Sundararajan, Manan Goel, Brian K. Vogel, Jason Blanchard, Jason Wright, Lakshman Krishnamurthy, Swarnendu Kar
  • Publication number: 20180088675
    Abstract: Embodiments of a system and method for gesture controlled output are generally described. A method may include receiving sensor input information from a wearable device, the sensor input information, determining, using the sensor input information, a gravity vector or a magnetic field, determining a change in horizontal angle, rotational angle, or vertical angle based on the sensor input information, the gravity vector, or the magnetic field, and determining a gesture based on the change in the horizontal angle, the rotational angle, or the vertical angle. The method may include outputting an indication, based on the gesture.
    Type: Application
    Filed: September 29, 2016
    Publication date: March 29, 2018
    Inventors: Brian K. Vogel, Swarnendu Kar
  • Publication number: 20180070155
    Abstract: A system and method for device action and configuration based on user context detection from sensors in peripheral devices are disclosed. A mobile device includes an interface to receive sensor data from a sensor of a wearable peripheral device worn by a user. The mobile device further includes at least one processor to: identify an activity engaged in by the user based on the sensor data, detect a completion of the activity based on the sensor data, and configure the mobile device to generate a notification to the user in response to the detection of the completion of the activity.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 8, 2018
    Inventors: Indira Negi, Lakshman Krishnamurthy, Fuad Al-Amin, Xiaochao Yang, Brian K. Vogel, Jun Li, Alexander Essaian, Sai Hemachandra Vemprala, Donnie H. Kim, Lama Nachman, Haibin Liu
  • Patent number: 9852731
    Abstract: Technologies are described herein that allow a user to wake up a computing device operating in a low-power state and for the user to be verified by speaking a single wake phrase. Wake phrase recognition is performed by a low-power engine. In some embodiments, the low-power engine may also perform speaker verification. In other embodiments, the mobile device wakes up after a wake phrase is recognized and a component other than the low-power engine performs speaker verification on a portion of the audio input comprising the wake phrase. More than one wake phrases may be associated with a particular user, and separate users may be associated with different wake phrases. Different wake phrases may cause the device transition from a low-power state to various active states.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: December 26, 2017
    Assignee: Intel Corporation
    Inventors: Saurabh Dadu, Lakshman Krishnamurthy, Francis M. Tharappel, Prabhakar R. Datta, Bryan R. Peebler, Michael E. Deisher, Mandar S. Joshi, Saurin Shah, Brian K. Vogel
  • Publication number: 20170177091
    Abstract: Processing techniques and device configurations for performing and controlling output effects at a plurality of wearable devices are generally described herein. In an example, a processing technique may include receiving, at a computing device, an indication of a triggering gesture that occurs at a first wearable device, determining an output effect corresponding to the indication of the triggering gesture, and in response to determining the output effect, transmitting commands to computing devices that are respectively associated with a plurality of wearable devices, the commands causing the plurality of wearable devices to generate the output effect at the plurality of wearable devices. In further examples, output effects such as haptic feedback, light output, or sound output, may be performed by the plurality of wearable devices, associated computing devices, or other controllable equipment.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Saurin Shah, Narayan Sundararajan, Manan Goel, Brian K. Vogel, Jason Blanchard, Jason Wright, Lakshman Krishnamurthy, Swarnendu Kar
  • Publication number: 20170177089
    Abstract: A wearable sensor system is disclosed that provides a measurable magnetic field that changes horizontally within the range of motion of human limbs. The wearable sensor system includes a magnetic sensing device, and one or more magnet devices that provide the measurable magnetic field with a strength exceeding the Earth's magnetic field. To this end, the magnetic sensing system provides a “personal” magnetic field about a user, with that magnetic field traveling with the user and overpowering adjacent interfering fields. The wearable sensor system may include a sensor arrangement that measures a strength of the personal magnetic field and field direction to perform horizontal localization, and may send a representation of a same to a remote computing device to cause an action to occur. Some such actions include output of pre-recorded or synthesized musical notes, for example.
    Type: Application
    Filed: December 21, 2015
    Publication date: June 22, 2017
    Applicant: Intel Corporation
    Inventors: SWARNENDU KAR, JEREMY PARRA, SAURIN SHAH, BRIAN K. VOGEL
  • Publication number: 20170032784
    Abstract: Technologies are described herein that allow a user to wake up a computing device operating in a low-power state and for the user to be verified by speaking a single wake phrase. Wake phrase recognition is performed by a low-power engine. in some embodiments, the low-power engine may also perform speaker verification. In other embodiments, the mobile device wakes up after a wake phrase is recognized and a component other than the low-power engine performs speaker verification on a portion of the audio input comprising the wake phrase, More than one wake phrases may be associated with a particular user, and separate users may be associated with different wake phrases. Different wake phrases may cause the device transition from a low-power state to various active states.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 2, 2017
    Inventors: Saurabh Dadu, Lakshman Krishnamurthy, Francis M. Tharappel, Prabhakar R. Datta, Bryan R. Peebler, Michael E. Deisher, Mandar S. Joshi, Saurin Shah, Brian K. Vogel
  • Publication number: 20170034618
    Abstract: A system and method for data transmission and power supply capability over an audio jack for mobile devices are disclosed. A particular embodiment includes: a peripheral device including an energy storage component, a microphone using a microphone bias voltage, and a select switch configured to provide a first switch position wherein charging of the energy storage component using the microphone bias voltage via the microphone conductor is enabled, the select switch being configured provide a second switch position wherein charging of the energy storage component using the microphone bias voltage via the microphone conductor is disabled; and a mobile device and an application (app) executable in the mobile device to produce a switching tone on the audio signal conductor of the audio jack, the switching tone causing the select switch to transition to the first switch position or the second switch position.
    Type: Application
    Filed: December 28, 2013
    Publication date: February 2, 2017
    Applicant: lntel Corporation
    Inventors: Indira Negi, Lakshman Krishnamurthy, Brian K. Vogel, Darren S. Crews, Sai Hemachandra Vemprala, Xiaochao Yang, Howard D. Millett, Alexander Essaian, Alanson P. Sample
  • Publication number: 20160379659
    Abstract: A system and method for data transmission over an audio jack are disclosed. A particular embodiment includes: an audio interface including an audio jack, the audio interface including a right audio signal interface and a left audio signal interface; a data extractor coupled to the audio interface, the data extractor being configured to receive an audio stream via the audio interface and to isolate data encoded into the audio stream as out-of-phase data tones; and a microcontroller coupled to the data extractor to receive and process the data isolated by the data extractor.
    Type: Application
    Filed: December 28, 2013
    Publication date: December 29, 2016
    Applicant: lntel Corporation
    Inventors: Indira Negi, Haibin Liu, Lakshman Krishnamurthy, Alexander Essaian, Brian K. Vogel, Xiaochao Yang, Prasanna Singamsetty, Fuad Al-Amin
  • Publication number: 20160291731
    Abstract: A device includes an enclosure and logic. The enclosure includes a plurality of capacitive touch sensor arrays disposed at least on two of a top side, a bottom side, a left side, a right side, a front side, and a back side of the device. The enclosure also includes a first display on the front side of the device. The logic receives touch interaction information from the plurality of capacitive touch sensor arrays and initiates an action based at least in part on the touch interaction information.
    Type: Application
    Filed: December 24, 2013
    Publication date: October 6, 2016
    Inventors: Min Liu, Lakshman Krishnamurthy, David L. Graumann, Jameson H. Williams, Miriam K. Selvaraj, Bryan R. Peebler, Wendy A. March, Brian K. Vogel, Wenbo Shen, Sihua Tian, Lijuan Xiao, Tao Wang, Xiaoyan Dang, Nithyananda S. Jeganathan, Sunil A. Kulkarni, Chan Wai Lee, Kaining Yuan
  • Patent number: 9460735
    Abstract: In one example a controller comprises logic, at least partially including hardware logic, configured to detect a key phrase in a received audio signal, and in response to the key phrase, to transmit a signal to a personal assistant in a remote electronic device, determine whether an audio input was received, and in response to a determination that additional audio input was received prior to receiving a response from the personal assistant in the remote electronic device, to buffer the audio input in a memory and forward the audio input to the personal assistant in the remote electronic device. Other examples may be described.
    Type: Grant
    Filed: December 28, 2013
    Date of Patent: October 4, 2016
    Assignee: Intel Corporation
    Inventors: Saurabh Dadu, Saurin Shah, Francis M. Tharappel, Lakshman Krishnamurthy, Brian K. Vogel, Swarnendu Kar
  • Publication number: 20160278647
    Abstract: Technology for detecting whether a wearable device is misaligned is disclosed. The device can include a number of sensors, such as heart rate, temperature, or other sensors used to sense a physiologic aspect of the user, such as heart rate and can further contain components capable of providing data as to the proper alignment or placement of the wearable device on the user. The wearable device may communicate with a computing device, such as a mobile device which can receive data from the wearable device and output notifications to the user, including notifications about proper or improper placement or alignment of the wearable device.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Inventors: Brian K. Vogel, John C. Wei, Fai Angus Yeung
  • Publication number: 20160278648
    Abstract: Technology for a wearable heart rate monitoring device is disclosed. The wearable heart rate monitoring device can include a heart rate sensor operable to collect sensor data, a modulator operable to generate a modulated signal that includes the sensor data, a housing configured to engage a body feature or surface in a manner that allows for heart rate detection, and a communication module configured to transmit the sensor data in the modulated signal to a mobile computing device via a wired connection that is power limited. The mobile computing device is typically configured to demodulate the modulated signal in order to extract the sensor data.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Inventors: Brian K. Vogel, John C. Wei, Fai Angus Yeung
  • Patent number: 9445209
    Abstract: Technologies are described herein that allow a user to wake up a computing device operating in a low-power state and for the user to be verified by speaking a single wake phrase. Wake phrase recognition is performed by a low-power engine. In some embodiments, the low-power engine may also perform speaker verification. In other embodiments, the mobile device wakes up after a wake phrase is recognized and a component other than the low-power engine performs speaker verification on a portion of the audio input comprising the wake phrase. More than one wake phrases may be associated with a particular user, and separate users may be associated with different wake phrases. Different wake phrases may cause the device transition from a low-power state to various active states.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: September 13, 2016
    Assignee: Intel Corporation
    Inventors: Saurabh Dadu, Lakshman Krishnamurthy, Francis M. Tharappel, Prabhakar R. Datta, Bryan R. Peebler, Michael E. Deisher, Mandar S. Joshi, Saurin Shah, Brian K. Vogel
  • Publication number: 20160192039
    Abstract: A system and method for device action and configuration based on user context detection from sensors in peripheral devices are disclosed. A particular embodiment includes: a peripheral device including one or more sensors to produce sensor data; and logic, at least a portion of which is partially implemented in hardware, the logic configured to determine a context from the sensor data and to perform at least one action based on the determined context, the at least one action including modifying a configuration in a mobile device for sending notifications to a user.
    Type: Application
    Filed: December 28, 2013
    Publication date: June 30, 2016
    Inventors: Indira NEGI, Lakshman KRISHNAMURTHY, Fuad AL-AMIN, Xiaochao YANG, Brian K. VOGEL, Jun LI, Alexander ESSAIAN, Sai Hemachandra VEMPRALA, Donnie H. Kim, Lama NACHMAN, Haibin LIU
  • Patent number: 9251806
    Abstract: Apparatus, computer-readable storage medium, and method associated with speech recognition are described. In embodiments, a mobile phone may include a processor; and a speech recognition module coupled with the processor. The voice recognition module may be configured to recognize one or more voice commands and may include first echo cancellation logic and second echo cancellation logic to be selectively employed during recognition of voice commands. Employment of the first and second echo cancellation logic respectively may cause the mobile phone to variably consume a first and second amount of energy, with the second amount of energy being less than the first amount energy.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: February 2, 2016
    Assignee: INTEL CORPORATION
    Inventors: Saurin Shah, Brian W. Bramlett, Saurabh Dadu, Swarnendu Kar, Brian K. Vogel
  • Publication number: 20150245154
    Abstract: Technologies are described herein that allow a user to wake up a computing device operating in a low-power state and for the user to be verified by speaking a single wake phrase. Wake phrase recognition is performed by a low-power engine. In some embodiments, the low-power engine may also perform speaker verification. In other embodiments, the mobile device wakes up after a wake phrase is recognized and a component other than the low-power engine performs speaker verification on a portion of the audio input comprising the wake phrase. More than one wake phrases may be associated with a particular user, and separate users may be associated with different wake phrases. Different wake phrases may cause the device transition from a low-power state to various active states.
    Type: Application
    Filed: July 11, 2013
    Publication date: August 27, 2015
    Inventors: Saurabh Dadu, Lakshman Krishnamurthy, Francis M. Tharappel, Prabhakar R. Datta, Bryan R. Peebler, Michael E. Deisher, Mandar S. Joshi, Saurin Shah, Brian K. Vogel
  • Publication number: 20150187369
    Abstract: In one example a controller comprises logic, at least partially including hardware logic, configured to detect a key phrase in a received audio signal, and in response to the key phrase, to transmit a signal to a personal assistant in a remote electronic device, determine whether an audio input was received, and in response to a determination that additional audio input was received prior to receiving a response from the personal assistant in the remote electronic device, to buffer the audio input in a memory and forward the audio input to the personal assistant in the remote electronic device. Other examples may be described.
    Type: Application
    Filed: December 28, 2013
    Publication date: July 2, 2015
    Inventors: SAURABH DADU, SAURIN SHAH, FRANCIS M. THARAPPEL, LAKSHMAN KRISHNAMURTHY, BRIAN K. VOGEL, SWARNENDU KAR