Patents by Inventor Brian Keith Russell

Brian Keith Russell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8915118
    Abstract: A garment may be used for detecting an impact. The garment may include a capacitive compression sensor attached to the garment having an inner and outer layer of conductive material as well as a compressible non-conductive material between the inner and outer layers. The outer layer of conductive material may include an electrical isolation region. The garment may further include an impact detection device electrically connected to the capacitive compression sensor via a conductor that traverses the electrical isolation region. The impact detection device may include a processing circuit configured to process a change in a capacitance of the capacitive compression sensor into a digital format representative of the impact. The outer layer of conductive material may enclose the inner layer of conductive material.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: December 23, 2014
    Assignee: Covidien LP
    Inventors: Brian Keith Russell, Paul Benjamin Mallinson, Stephen Christopher Kent, Christopher Michael Solomon
  • Publication number: 20140343448
    Abstract: Methods, apparatuses and systems are described for determining respiration through impedance measurements using only two electrodes. A drive signal may be applied to a person, using only two electrodes. Using the same electrodes, the fluctuations in the voltage of the drive signal are determined. The voltage fluctuations in the drive signal are the result of impedance variations in the person's thoracic cavity due to respiration. Therefore, the voltage fluctuations may be used to determine a respiration rate of the person. In doing so, the voltage fluctuations may be digitized using a sampling rate that is much less than the frequency of the applied drive signal.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 20, 2014
    Applicant: Zephyr Technology Corporation
    Inventors: BRIAN KEITH RUSSELL, JONATHAN JAMES WOODWARD, AMIT KUMAR MUKHERJEE, DANIEL WAYNE BARTLETT, CHRIS SOLOMON
  • Publication number: 20140340219
    Abstract: Methods, apparatuses and systems are described for monitoring physiological parameters by using one or more sensors at a person. First and second physiological parameters of the person are monitored. A determination may be made, at the one or more sensors, that at least one of the first and second physiological parameters has crossed a threshold. An alert event may be generated at the one or more sensors, based on the crossed thresholds. The alert event may then be transmitted to a computing device that is separate from the one or more sensors.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 20, 2014
    Applicant: Zephyr Technology Corporation
    Inventors: BRIAN KEITH RUSSELL, JONATHAN JAMES WOODWARD, AMIT KUMAR MUKHERJEE, DANIEL WAYNE BARTLETT, BENJAMIN MORRIS
  • Publication number: 20130285672
    Abstract: A sensing system is disclosed that uses at least one conductive plate and associated electronic circuitry to provide an output that is indicative of an object's position in relation to the at least one conductive plate. The sensing system is provided with a high impedance drive signal that varies as a result of the location of an object relative to the at least one conductive plate. The electronic circuitry receives a high impedance drive signal value as an input and a processor uses the value to calculate a digital output indicative of the object's position. The high impedance drive signal value is monitored over time enabling the objects position, displacement, pressure, movement, impact and energy to be determined. This data is output to a display and may also be transmitted to a person located remotely from the object being monitored.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 31, 2013
    Inventors: Brian Keith RUSSELL, Paul Benjamin Mallinson, Stephen Christopher Kent, Christopher Michael Solomon
  • Patent number: 8400302
    Abstract: A sensing system is disclosed that uses at least one conductive plate and associated electronic circuitry to provide an output that is indicative of an object's position in relation to the at least one conductive plate. The sensing system is provided with a high impedance drive signal that varies as a result of the location of an object relative to the at least one conductive plate. The electronic circuitry receives a high impedance drive signal value as an input and a processor uses the value to calculate a digital output indicative of the object's position. The high impedance drive signal value is monitored over time enabling the objects position, displacement, pressure, movement, impact and energy to be determined. This data is output to a display and may also be transmitted to a person located remotely from the object being monitored.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 19, 2013
    Assignee: Zephyr Technology Corporation
    Inventors: Brian Keith Russell, Paul Benjamin Mallinson, Stephen Christopher Kent, Christopher Michael Solomon
  • Publication number: 20120144934
    Abstract: A device, method of manufacture, and garment for detecting an impact is provided. In one embodiment, the garment comprises a capacitive compression sensor attached to the garment having an inner and outer layer of conductive material as well as a compressible non-conductive material between the inner and outer layers. The outer layer of conductive material may include an electrical isolation region. The garment may further include an impact detection device electrically connected to the capacitive compression sensor via a conductor that traverses the electrical isolation region; and wherein the impact detection device comprises a processing circuit configured to process a change in a capacitance of the capacitive compression sensor into a digital format representative of the impact. The outer layer of conductive material may enclose the inner layer of conductive material.
    Type: Application
    Filed: November 8, 2011
    Publication date: June 14, 2012
    Inventors: Brian Keith Russell, Paul Benjamin Mallinson, Stephen Christopher Kent, Christopher MIchael Solomon
  • Patent number: 8079247
    Abstract: An impact detection system provides a means of sensing, monitoring and recording impact events on an impact surface using at least one sensor that is incorporated into the impact surface. The sensor(s) can be integral with, attached to or located behind various types of impact surface including various types of garments that can be worn by an individual or on composite materials such as an aircraft fuselage for example. The impact detection system includes a portable impact detection device electrically connected to the sensor(s) and is used to detect ballistic or non-ballistic type impacts on the impact surface. The portable impact detection device processes the impact data detected by the sensor(s) and stores the data for analysis at a later time or outputs the data to a third party system for review and/or analysis.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: December 20, 2011
    Assignee: Zephyr Technology Corporation
    Inventors: Brian Keith Russell, Paul Benjamin Mallinson, Stephen Christopher Kent, Christopher Michael Solomon
  • Publication number: 20110133931
    Abstract: A sensing system is disclosed that uses at least one conductive plate and associated electronic circuitry to provide an output that is indicative of an object's position in relation to the at least one conductive plate. The sensing system is provided with a high impedance drive signal that varies as a result of the location of an object relative to the at least one conductive plate. The electronic circuitry receives a high impedance drive signal value as an input and a processor uses the value to calculate a digital output indicative of the object's position. The high impedance drive signal value is monitored over time enabling the objects position, displacement, pressure, movement, impact and energy to be determined. This data is output to a display and may also be transmitted to a person located remotely from the object being monitored.
    Type: Application
    Filed: June 10, 2010
    Publication date: June 9, 2011
    Inventors: Brian Keith Russell, Paul Benjamin Mallinson, Stephen Christopher Kent, Christopher Michael Solomon
  • Publication number: 20100083733
    Abstract: An impact detection system provides a means of sensing, monitoring and recording impact events on an impact surface using at least one sensor that is incorporated into the impact surface. The sensor(s) can be integral with, attached to or located behind various types of impact surface including various types of garments that can be worn by an individual or on composite materials such as an aircraft fuselage for example. The impact detection system includes a portable impact detection device electrically connected to the sensor(s) and is used to detect ballistic or non-ballistic type impacts on the impact surface. The portable impact detection device processes the impact data detected by the sensor(s) and stores the data for analysis at a later time or outputs the data to a third party system for review and/or analysis.
    Type: Application
    Filed: August 7, 2007
    Publication date: April 8, 2010
    Inventors: Brian Keith Russell, Paul Benjamin Mallinson, Stephen Kent, Michael Christopher Solomon
  • Publication number: 20090281394
    Abstract: The bio mechanical sensor system is disclosed that uses conductive fabric sensors to detect, monitor and record one or more physiological parameters of a person wearing a garment that incorporates the fabric sensors such as a body harness or strap for example, that is attached to a person. The physiological parameters that can be detected include a wearer's heart rate and respiration rate plus ambient temperature and body temperature for example. The garment has a monitoring device that is attached to the garment and used to receive the detected physiological data. A processing circuit within the monitoring device then processes the data and outputs the person's physiological data to a display device in a format characteristic of the person's heart rate and respiratory rate and/or outputs the data to a third party system for review and analysis.
    Type: Application
    Filed: September 21, 2007
    Publication date: November 12, 2009
    Inventors: Brian Keith Russell, Stephen Christopher Kent, Paul Benjamin Mallinson, Christopher Michael Solomon, Nicholas Alistair Close
  • Publication number: 20090227856
    Abstract: A garment comprising at least one electrocardiogram sensor integrated into the garment, the electrocardiogram sensor comprising an electrode on the inside of the garment and arranged to contact a user's skin, and a resilient compressible filler provided between the garment and the electrode such that in use the electrode is held substantially in place against the user's skin when the garment moves relative to the user's skin.
    Type: Application
    Filed: December 19, 2008
    Publication date: September 10, 2009
    Inventors: Brian Keith Russell, Jonathan Woodward, Christopher Michael Solomon, Paul Benjamin Mallinson
  • Patent number: 6414974
    Abstract: A control circuit (10) controls the operation of a laser diode (1) for controlling the average power output (Pav) and the extinction ratio. A state machine (21) controls the control circuit (10) which reads the current from a monitor photo diode (2) which is coupled to the laser diode (1). An amplifier (20) determines the average power output of the laser diode (1) which is fed to a first comparator (23). The first comparator (23) compares the average power output with a reference value set by a resistor (R3). The output from the comparator (23) is fed to the up/down pin of a first counter (25) which is clocked by the state machine (21). In the event that the average power output is too high the first counter (25) decreases the bias current to the laser diode (1) outputted by a constant current source (5), and vice versa.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: July 2, 2002
    Assignee: Analog Devices, Inc.
    Inventors: Brian Keith Russell, Peter Real
  • Patent number: 6392578
    Abstract: A resistive DAC (1) comprises a digital input port (2) and an analog output port (3) on which analog resistance output values are outputted in response to corresponding digital input codes on the input port (2). A decoding and control circuit (4) selects appropriate resistors (R1) to (RN) from a resistor chain (5) for providing the analog resistance output of the analog output port (3). A register (7) stores a transfer coefficient in binary code which can be read through the input port (2) and by which each digital input code should be multiplied in order to produce an analog resistance output of predetermined value. The transfer coefficient in the register (7) takes account of variations in internal circuit parameters which causes the analog resistance outputs on the output port (3) to be less than they would in an ideal resistive DAC.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: May 21, 2002
    Assignee: Analog Devices, Inc.
    Inventor: Brian Keith Russell