Patents by Inventor Brian L. Frey

Brian L. Frey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8628974
    Abstract: A fast and sensitive method and device for protein sequencing are disclosed. The method uses a combination of Edman degradation chemistry and mass spectrometry to sequence proteins and polypeptides. A peptide degradation reaction is performed on a polypeptide or protein ion reactant in the gas phase. The reaction yields a first ion product corresponding to a first amino acid residue of the polypeptide or protein reactant and a polypeptide or protein fragment ion. The mass-to-charge ratio for the first ion product, or the polypeptide or protein fragment ion, or both, is then determined. The first amino acid residue of the polypeptide or protein reactant is then identified from the mass-to-charge ratio so determined.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: January 14, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Xiaoyu Chen, Michael S. Westphall, Lloyd M. Smith, Brian L. Frey
  • Patent number: 8592216
    Abstract: The present invention provides methods for enhancing the fragmentation of peptides for mass spectrometry by modifying the peptides with a tagging reagent containing a functional group, such as a tertiary amine, having a greater gas-phase basicity than the amide backbone of the peptide. These high gas-phase basicity functional groups are attached to a peptide by reacting the tagging reagent to one or more available carboxylic acid groups of the peptide. Linking these high gas-phase functional groups to the peptides leads to higher charge state ions from electrospray ionization mass spectrometry (ESI-MS), which fragment more extensively during fragmentation techniques, particularly non-ergodic fragmentation techniques such as electron capture dissociation (ECD) and electron transfer dissociation (ETD).
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: November 26, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Brian L. Frey, April L. Jue, Casey J. Krusemark, Lloyd M. Smith, Joshua J. Coon
  • Patent number: 8563777
    Abstract: Relative quantification of metabolites by Electrospray Ionization Mass Spectrometry (ESI-MS) requiring a mechanism for simultaneous analysis of multiple analytes in two or more samples. Labeling reagents that are reactive to particular compound classes and differ only in their isotopic compositions facilitate relative quantification. Heavy and light isotopic forms of methylacetimidate were synthesized and used as labeling reagents for quantification of amine-containing molecules. Heavy and light isotopic forms of formaldehyde and cholamine were also synthesized and used independently as labeling reagents for quantification of amine-containing and carboxylic acid-containing molecules, such as found in biological samples. The labeled end-products are positively charged under normal acidic conditions involving conventional Liquid Chromatography Mass Spectrometry (LC/MS) applications.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: October 22, 2013
    Assignees: Wisconsin Alumni Research Foundation, The Board of Trustees of the University of Illinois
    Inventors: Lloyd M. Smith, Michael R. Shortreed, Brian L. Frey, Margaret F. Phillips, Joshua J. Coon, Shane M. Lamos, Casey J. Krusemark, Peter J. Belshaw, Madhusudan Patel, Neil L. Kelleher
  • Publication number: 20120022230
    Abstract: Relative quantification of metabolites by Electrospray Ionization Mass Spectrometry (ESI-MS) requiring a mechanism for simultaneous analysis of multiple analytes in two or more samples. Labeling reagents that are reactive to particular compound classes and differ only in their isotopic compositions facilitate relative quantification. Heavy and light isotopic forms of methylacetimidate were synthesized and used as labeling reagents for quantification of amine-containing molecules. Heavy and light isotopic forms of formaldehyde and cholamine were also synthesized and used independently as labeling reagents for quantification of amine-containing and carboxylic acid-containing molecules, such as found in biological samples. The labeled end-products are positively charged under normal acidic conditions involving conventional Liquid Chromatography Mass Spectrometry (LC/MS) applications.
    Type: Application
    Filed: June 8, 2011
    Publication date: January 26, 2012
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Lloyd M. SMITH, MICHAEL R. SHORTREED, BRIAN L. FREY, MARGARET F. PHILLIPS, JOSHUA J. COON, SHANE M. LAMOS, CASEY J. KRUSEMARK, PETER J. BELSHAW, MADHUSUDAN PATEL, NEIL L. KELLEHER
  • Patent number: 7982070
    Abstract: Relative quantification of metabolites by Electrospray Ionization Mass Spectrometry (ESI-MS) requiring a mechanism for simultaneous analysis of multiple analytes in two or more samples. Labeling reagents that are reactive to particular compound classes and differ only in their isotopic kit facilitating relative quantification and providing tangible evidence for the existence of specific functional groups. Heavy and light isotopic forms of methylacetimidate were synthesized and used as labeling reagents for quantification of amine-containing molecules, such as biological samples. Heavy and light isotopic forms of formaldehyde and cholamine were also synthesized and used independently as labeling reagents for quantification of amine-containing and carboxylic acid-containing molecules, such as found in biological samples. Advantageously, the labeled end-products are positively charged under normal acidic conditions involving conventional Liquid Chromatography Mass Spectrometry (LC/MS) applications.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: July 19, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Lloyd M. Smith, Michael R. Shortreed, Brian L. Frey, Margaret F. Phillips, Joshua J. Coon, Shane M. Lamos, Casey J. Krusemark, Peter J. Belshaw, Madhusudan Patel, Neil L. Kelleher
  • Publication number: 20100330680
    Abstract: The present invention provides methods for enhancing the fragmentation of peptides for mass spectrometry by modifying the peptides with a tagging reagent containing a functional group, such as a tertiary amine, having a greater gas-phase basicity than the amide backbone of the peptide. These high gas-phase basicity functional groups are attached to a peptide by reacting the tagging reagent to one or more available carboxylic acid groups of the peptide. Linking these high gas-phase functional groups to the peptides leads to higher charge state ions from electrospray ionization mass spectrometry (ESI-MS), which fragment more extensively during fragmentation techniques, particularly non-ergodic fragmentation techniques such as electron capture dissociation (ECD) and electron transfer dissociation (ETD).
    Type: Application
    Filed: April 14, 2010
    Publication date: December 30, 2010
    Inventors: Brian L. Frey, April L. Jue, Casey J. Krusemark, Lloyd M. Smith, Joshua J. Coon
  • Patent number: 7518108
    Abstract: This invention provides methods, devices and device components for preparing ions from liquid samples containing chemical species and methods and devices for analyzing chemical species in liquid samples. The present invention provides an ion source for generating analyte ions having a selected charge state distribution, such as a reduced charged state distribution, that may be effectively interfaced with a variety of charged particle analyzers, including virtually any type of mass spectrometer.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 14, 2009
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Brian L. Frey, Lloyd M. Smith, Michael S. Westphall
  • Publication number: 20080248585
    Abstract: A fast and sensitive method and device for protein sequencing are disclosed. The method uses a combination of Edman degradation chemistry and mass spectrometry to sequence proteins and polypeptides. A peptide degradation reaction is performed on a polypeptide or protein ion reactant in the gas phase. The reaction yields a first ion product corresponding to a first amino acid residue of the polypeptide or protein reactant and a polypeptide or protein fragment ion. The mass-to-charge ratio for the first ion product, or the polypeptide or protein fragment ion, or both, is then determined. The first amino acid residue of the polypeptide or protein reactant is then identified from the mass-to-charge ratio so determined.
    Type: Application
    Filed: July 15, 2005
    Publication date: October 9, 2008
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Xiaoyu Chen, Michael S. Westphall, Lloyd M. Smith, Brian L. Frey
  • Patent number: 5629213
    Abstract: A biosensor for use in a surface plasmon resonance (SPR) System includes a transparent substrate layer, a thin metallic film on the substrate, and an ultrathin organic layer of a material which is polyanionic and adsorbs on the metallic film, and a layer of polylysine on this polyanionic material. In one embodiment, there is an outer layer on the polylysine which binds with a specific desired analyte.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: May 13, 1997
    Inventors: Steven E. Kornguth, Robert M. Corn, Claire E. Jordan, Brian L. Frey