Patents by Inventor Brian L. Spohn

Brian L. Spohn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8851055
    Abstract: A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: October 7, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Ryan D. Martini, Brian L. Spohn, Allen J. Lehmen, Teresa L. Cerbolles
  • Patent number: 8756924
    Abstract: A catalyst heating system includes a monitoring module, a mode selection module and an electrically heated catalyst (EHC) control module. The monitoring module monitors at least one of (i) a first temperature of a non-EHC of a catalyst assembly in an exhaust system of an engine and (ii) an active catalyst volume of the catalyst assembly. The mode selection module is configured to select an EHC heating mode and generate a mode signal based on the at least one of the first temperature and the active catalyst volume. The EHC control module controls current to an EHC of the catalyst assembly based on the mode signal.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: June 24, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn, Bryan Nathaniel Roos
  • Patent number: 8727050
    Abstract: A system and control module for controlling an electrically heated catalyst includes a remote start module generating a remote start signal, a catalyst control module controlling the electrically heated catalyst based on the remote start signal and an engine control module starting the engine after preheating and/or when required by the vehicle to honor a request as defined in this document.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: May 20, 2014
    Inventors: Bryan Nathaniel Roos, Brian L. Spohn, Eugene V. Gonze, Halim G. Santoso
  • Patent number: 8720193
    Abstract: A catalyst heating system includes a monitoring module, a mode selection module and an electrically heated catalyst (EHC) control module. The monitoring module monitors at least one of (i) a first active volume of a catalyst assembly in an exhaust system of an engine and (ii) a first temperature of a non-EHC of the catalyst assembly. The mode selection module is configured to select a non-EHC radiant heating mode and generate a mode signal based on the at least one of the first active catalyst volume and the first temperature. An EHC control module increases temperature of the EHC to an elevated temperature that is greater than a stabilization temperature based on the mode signal. The stabilization temperature is greater than a catalyst light off temperature.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: May 13, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn, Bryan Nathaniel Roos
  • Patent number: 8627654
    Abstract: A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: January 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Bryan Nathaniel Roos, Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn
  • Publication number: 20130280561
    Abstract: A system and method for using exhaust gas to heat and/or charge a battery for a hybrid vehicle is provided. The system and method use an exhaust gas heat recovery (EGHR) device to heat a heat transfer fluid. The heat transfer fluid is thermally connected to a first heat exchanger to heat the battery and/or to a second heat exchanger to charge the battery if predetermined conditions are met.
    Type: Application
    Filed: November 29, 2012
    Publication date: October 24, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Joseph M. Tolkacz, Brian L. Spohn
  • Patent number: 8565970
    Abstract: A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: October 22, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Karl Andrew Sime, Brian L. Spohn, Besim Demirovic, Ryan D. Martini, Jean Marie Miller
  • Patent number: 8475333
    Abstract: A powertrain system includes a hybrid transmission and an internal combustion engine coupled to an exhaust aftertreatment device. A method for operating the powertrain system includes operating the hybrid transmission to generate tractive torque responsive to an operator torque request with the internal combustion engine in an engine-off state so long as the tractive torque is less than a threshold. The internal combustion engine is operated in an engine-on state at preferred operating conditions to effect light-off of the exhaust aftertreatment device and the hybrid transmission is coincidentally operated to generate tractive torque responsive to the operator torque request when the operator torque request exceeds the threshold. The internal combustion engine is then operated in the engine-on state to generate tractive torque responsive to the operator torque request.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: July 2, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Bryan Nathaniel Roos, Brian L. Spohn
  • Patent number: 8463495
    Abstract: A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: June 11, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Brian L. Spohn, George M. Claypole, Richard D Starr
  • Publication number: 20130099012
    Abstract: A method of heating a cabin of a motor vehicle that includes an internal combustion engine operatively connected to an exhaust system having a catalyst, and a heating, ventilation, and air conditioning (HVAC) system is provided. The method includes detecting a request to increase temperature inside the cabin, supplying fuel and air to the engine, and motoring the engine to pump the fuel and air into the exhaust system. The method also includes heating the catalyst to combust the fuel and air inside the catalyst such that a stream of post-combustion exhaust gas is generated. The method additionally includes channeling the generated stream of post-combustion exhaust gas to the HVAC system such that a temperature of a coolant circulated through the HVAC system is increased to heat the cabin. A system configured to perform the above method is also disclosed.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Bryan Nathaniel Roos, Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn
  • Publication number: 20130046425
    Abstract: A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline plus the dissipation commands.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Karl Andrew Sime, Brian L. Spohn, Besim Demirovic, Ryan D. Martini, Jean Marie Miller
  • Publication number: 20130031889
    Abstract: A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 7, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Bryan Nathaniel Roos, Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn
  • Publication number: 20120323461
    Abstract: A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ryan D. Martini, Brian L. Spohn, Allen J. Lehmen, Teresa L. Cerbolles
  • Publication number: 20120283067
    Abstract: A powertrain system includes a hybrid transmission and an internal combustion engine coupled to an exhaust aftertreatment device. A method for operating the powertrain system includes operating the hybrid transmission to generate tractive torque responsive to an operator torque request with the internal combustion engine in an engine-off state so long as the tractive torque is less than a threshold. The internal combustion engine is operated in an engine-on state at preferred operating conditions to effect light-off of the exhaust aftertreatment device and the hybrid transmission is coincidentally operated to generate tractive torque responsive to the operator torque request when the operator torque request exceeds the threshold. The internal combustion engine is then operated in the engine-on state to generate tractive torque responsive to the operator torque request.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Bryan Nathaniel Roos, Brian L. Spohn
  • Publication number: 20120204539
    Abstract: A hybrid vehicle includes an exhaust gas treatment system having a bypass valve for directing a flow of air or exhaust gas through a bypass path or through a primary catalyst. The hybrid vehicle includes an internal combustion engine and an electric motor, each selectively engageable with a transmission to provide a drive torque. The electric motor spins the internal combustion engine when engaged to provide the drive torque, thereby creating a flow of unheated air from the internal combustion engine that flows through the exhaust gas treatment system. The bypass valve directs the flow of air through the bypass path when the engine is spinning and not fueled to prevent cooling of the primary catalyst. The bypass valve directs the flow of exhaust gas through the primary catalyst when the internal combustion engine is spinning and is being fueled, i.e., running, to treat the flow of exhaust gas.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 16, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Bryan Nathaniel Roos, Halim G. Santoso, Brian L. Spohn
  • Publication number: 20120204536
    Abstract: A method of operating a hybrid vehicle when an internal combustion engine is not running includes heating a flow of air flowing through an exhaust gas treatment system of the internal combustion engine that is supplied by an air pump with a heating module and a hydrocarbon injector. The heating module heats an electrically heated catalyst of the exhaust gas treatment system in preparation for starting the internal combustion engine. Additionally, thermal energy is recovered from the flow of air downstream of the electrically heated catalyst and transferred to at least one other vehicle system to provide thermal energy to the vehicle system, such as an engine coolant for a cabin heating system or a transmission fluid for a drivetrain transmission system.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 16, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Bryan Nathaniel Roos, Halim G. Santoso, Brian L. Spohn
  • Publication number: 20120203404
    Abstract: A method of controlling a hybrid powertrain having an electric machine and an engine is provided. The method includes determining a requested power and an excess power for the hybrid powertrain. The requested power substantially meets the needs of the hybrid powertrain. The excess power is non-zero and is not included in the determined requested power. The method also includes absorbing the excess power with the electric machine.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 9, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Andres V. Mituta, Brian L. Spohn, Karl Andrew Sime
  • Publication number: 20120143437
    Abstract: A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 7, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Brian L. Spohn, George M. Claypole, Richard D. Starr
  • Publication number: 20120102952
    Abstract: A method of operating an exhaust gas heat recovery (EGHR) system in a vehicle including an engine, a transmission, and an EGHR heat exchanger is provided. The method includes monitoring an engine water temperature and may include monitoring a transmission oil temperature and an ambient air temperature. The method includes comparing the monitored engine water temperature to one or more calibrated engine temperatures. Based upon the monitored temperatures and comparison to the calibrated temperatures, the method controls a two-way valve. The two-way valve is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, and the transmission position allows heat-exchange communication between the EGHR heat exchanger, the transmission, and the engine.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Brian L. Spohn, Teresa L. Cerbolles
  • Publication number: 20110283675
    Abstract: A catalyst heating system includes a monitoring module, a mode selection module and an electrically heated catalyst (EHC) control module. The monitoring module monitors at least one of (i) a first temperature of a non-EHC of a catalyst assembly in an exhaust system of an engine and (ii) an active catalyst volume of the catalyst assembly. The mode selection module is configured to select an EHC heating mode and generate a mode signal based on the at least one of the first temperature and the active catalyst volume. The EHC control module controls current to an EHC of the catalyst assembly based on the mode signal.
    Type: Application
    Filed: May 19, 2010
    Publication date: November 24, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn, Bryan Nathaniel Roos