Patents by Inventor Brian L. Sumner

Brian L. Sumner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11875197
    Abstract: Systems, apparatuses, and methods for managing a number of wavefronts permitted to concurrently execute in a processing system. An apparatus includes a register file with a plurality of registers and a plurality of compute units configured to execute wavefronts. A control unit of the apparatus is configured to allow a first number of wavefronts to execute concurrently on the plurality of compute units. The control unit is configured to allow no more than a second number of wavefronts to execute concurrently on the plurality of compute units, wherein the second number is less than the first number, in response to detection that thrashing of the register file is above a threshold. The control unit is configured to detect said thrashing based at least in part on a number of registers in use by executing wavefronts that spill to memory.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: January 16, 2024
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bradford Michael Beckmann, Steven Tony Tye, Brian L. Sumner, Nicolai Hähnle
  • Publication number: 20230153149
    Abstract: Systems, apparatuses, and methods for dynamic graphics processing unit (GPU) register allocation are disclosed. A GPU includes at least a plurality of compute units (CUs), a control unit, and a plurality of registers for each CU. If a new wavefront requests more registers than are currently available on the CU, the control unit spills registers associated with stack frames at the bottom of a stack since they will not likely be used in the near future. The control unit has complete flexibility determining how many registers to spill based on dynamic demands and can prefetch the upcoming necessary fills without software involvement. Effectively, the control unit manages the physical register file as a cache. This allows younger workgroups to be dynamically descheduled so that older workgroups can allocate additional registers when needed to ensure improved fairness and better forward progress guarantees.
    Type: Application
    Filed: January 12, 2023
    Publication date: May 18, 2023
    Inventors: Bradford Michael Beckmann, Steven Tony Tye, Brian L. Sumner, Nicolai Hähnle
  • Patent number: 11579922
    Abstract: Systems, apparatuses, and methods for dynamic graphics processing unit (GPU) register allocation are disclosed. A GPU includes at least a plurality of compute units (CUs), a control unit, and a plurality of registers for each CU. If a new wavefront requests more registers than are currently available on the CU, the control unit spills registers associated with stack frames at the bottom of a stack since they will not likely be used in the near future. The control unit has complete flexibility determining how many registers to spill based on dynamic demands and can prefetch the upcoming necessary fills without software involvement. Effectively, the control unit manages the physical register file as a cache. This allows younger workgroups to be dynamically descheduled so that older workgroups can allocate additional registers when needed to ensure improved fairness and better forward progress guarantees.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: February 14, 2023
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bradford Michael Beckmann, Steven Tony Tye, Brian L. Sumner, Nicolai Hähnle
  • Patent number: 11544106
    Abstract: Systems, apparatuses, and methods for implementing continuation analysis tasks (CATs) are disclosed. In one embodiment, a system implements hardware acceleration of CATs to manage the dependencies and scheduling of an application composed of multiple tasks. In one embodiment, a continuation packet is referenced directly by a first task. When the first task completes, the first task enqueues a continuation packet on a first queue. The first task can specify on which queue to place the continuation packet. The agent responsible for the first queue dequeues and executes the continuation packet which invokes an analysis phase which is performed prior to determining which dependent tasks to enqueue. If it is determined during the analysis phase that a second task is now ready to be launched, the second task is enqueued on one of the queues. Then, an agent responsible for this queue dequeues and executes the second task.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: January 3, 2023
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven Tony Tye, Brian L. Sumner, Bradford Michael Beckmann, Sooraj Puthoor
  • Publication number: 20220206876
    Abstract: Systems, apparatuses, and methods for managing a number of wavefronts permitted to concurrently execute in a processing system. An apparatus includes a register file with a plurality of registers and a plurality of compute units configured to execute wavefronts. A control unit of the apparatus is configured to allow a first number of wavefronts to execute concurrently on the plurality of compute units. The control unit is configured to allow no more than a second number of wavefronts to execute concurrently on the plurality of compute units, wherein the second number is less than the first number, in response to detection that thrashing of the register file is above a threshold.
    Type: Application
    Filed: December 29, 2020
    Publication date: June 30, 2022
    Inventors: Bradford Michael Beckmann, Steven Tony Tye, Brian L. Sumner, Nicolai Hähnle
  • Publication number: 20220206841
    Abstract: Systems, apparatuses, and methods for dynamic graphics processing unit (GPU) register allocation are disclosed. A GPU includes at least a plurality of compute units (CUs), a control unit, and a plurality of registers for each CU. If a new wavefront requests more registers than are currently available on the CU, the control unit spills registers associated with stack frames at the bottom of a stack since they will not likely be used in the near future. The control unit has complete flexibility determining how many registers to spill based on dynamic demands and can prefetch the upcoming necessary fills without software involvement. Effectively, the control unit manages the physical register file as a cache. This allows younger workgroups to be dynamically descheduled so that older workgroups can allocate additional registers when needed to ensure improved fairness and better forward progress guarantees.
    Type: Application
    Filed: December 29, 2020
    Publication date: June 30, 2022
    Inventors: Bradford Michael Beckmann, Steven Tony Tye, Brian L. Sumner, Nicolai Hähnle
  • Publication number: 20200379802
    Abstract: Systems, apparatuses, and methods for implementing continuation analysis tasks (CATs) are disclosed. In one embodiment, a system implements hardware acceleration of CATs to manage the dependencies and scheduling of an application composed of multiple tasks. In one embodiment, a continuation packet is referenced directly by a first task. When the first task completes, the first task enqueues a continuation packet on a first queue. The first task can specify on which queue to place the continuation packet. The agent responsible for the first queue dequeues and executes the continuation packet which invokes an analysis phase which is performed prior to determining which dependent tasks to enqueue. If it is determined during the analysis phase that a second task is now ready to be launched, the second task is enqueued on one of the queues. Then, an agent responsible for this queue dequeues and executes the second task.
    Type: Application
    Filed: April 13, 2020
    Publication date: December 3, 2020
    Inventors: Steven Tony Tye, Brian L. Sumner, Bradford Michael Beckmann, Sooraj Puthoor
  • Patent number: 10620994
    Abstract: Systems, apparatuses, and methods for implementing continuation analysis tasks (CATs) are disclosed. In one embodiment, a system implements hardware acceleration of CATs to manage the dependencies and scheduling of an application composed of multiple tasks. In one embodiment, a continuation packet is referenced directly by a first task. When the first task completes, the first task enqueues a continuation packet on a first queue. The first task can specify on which queue to place the continuation packet. The agent responsible for the first queue dequeues and executes the continuation packet which invokes an analysis phase which is performed prior to determining which dependent tasks to enqueue. If it is determined during the analysis phase that a second task is now ready to be launched, the second task is enqueued on one of the queues. Then, an agent responsible for this queue dequeues and executes the second task.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: April 14, 2020
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven Tony Tye, Brian L. Sumner, Bradford Michael Beckmann, Sooraj Puthoor
  • Publication number: 20180349145
    Abstract: Systems, apparatuses, and methods for implementing continuation analysis tasks (CATs) are disclosed. In one embodiment, a system implements hardware acceleration of CATs to manage the dependencies and scheduling of an application composed of multiple tasks. In one embodiment, a continuation packet is referenced directly by a first task. When the first task completes, the first task enqueues a continuation packet on a first queue. The first task can specify on which queue to place the continuation packet. The agent responsible for the first queue dequeues and executes the continuation packet which invokes an analysis phase which is performed prior to determining which dependent tasks to enqueue. If it is determined during the analysis phase that a second task is now ready to be launched, the second task is enqueued on one of the queues. Then, an agent responsible for this queue dequeues and executes the second task.
    Type: Application
    Filed: May 30, 2017
    Publication date: December 6, 2018
    Inventors: Steven Tony Tye, Brian L. Sumner, Bradford Michael Beckmann, Sooraj Puthoor
  • Patent number: 9563402
    Abstract: A method and apparatus for additive range reduction are disclosed. A constant may be pre-stored in a look-up table (LUT), and at least one section of the constant may be retrieved from the LUT for generating a product of an input argument and the constant such that a precision of the product may be controlled in any granularity. For a trigonometric function, 2/? is stored in the LUT, and at least one section of 2/? may be retrieved from the LUT. The argument is multiplied with the retrieved sections of 2/?. The retrieved sections are determined to correctly generate the two least significant bits (LSBs) of an integer portion and a scalable number of most significant bits of the multiplication result. An output of the trigonometric function is generated for the argument with a fractional portion of the multiplication result based on two LSBs of the integer portion of the multiplication result.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 7, 2017
    Assignee: ADVANCED MICRO DEVICES, INC.
    Inventors: Christopher L. Spencer, Yun-Xiao Zou, Brian L. Sumner
  • Publication number: 20130060829
    Abstract: A method and apparatus for additive range reduction are disclosed. A constant may be pre-stored in a look-up table (LUT), and at least one section of the constant may be retrieved from the LUT for generating a product of an input argument and the constant such that a precision of the product may be controlled in any granularity. For a trigonometric function, 2/? is stored in the LUT, and at least one section of 2/? may be retrieved from the LUT. The argument is multiplied with the retrieved sections of 2/?. The retrieved sections are determined to correctly generate the two least significant bits (LSBs) of an integer portion and a scalable number of most significant bits of the multiplication result. An output of the trigonometric function is generated for the argument with a fractional portion of the multiplication result based on two LSBs of the integer portion of the multiplication result.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 7, 2013
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Christopher L. Spencer, Yun-Xiao Zou, Brian L. Sumner