Patents by Inventor Brian LABOMBARD

Brian LABOMBARD has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11810712
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: November 7, 2023
    Assignees: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Brian Labombard, Robert S. Granetz, James Irby, Rui Vieira, William Beck, Daniel Brunner, Jeffrey Doody, Martin Greenwald, Zachary Hartwig, Philip Michael, Robert Mumgaard, Alexey Radovinsky, Shunichi Shiraiwa, Brandon N. Sorbom, John Wright, Lihua Zhou
  • Publication number: 20230282400
    Abstract: A method includes inserting a high temperature superconductor (HTS) cable into a groove of a support structure; and flowing a molten metal into the HTS cable while the HTS cable is in the groove. A magnet structure includes a support structure having a groove; and a high temperature superconductor (HTS) cable comprising a metal at least partially filling the HTS cable, the HTS cable being disposed in the groove.
    Type: Application
    Filed: May 11, 2021
    Publication date: September 7, 2023
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Alexey RADOVINSKY, Brian LABOMBARD, Robert MUMGAARD
  • Publication number: 20230207171
    Abstract: Described are concepts directed toward systems, structures and techniques to create low-resistance, high current capacity, demountable solder joint connections. Such systems, structures and techniques may be used to simultaneously create low-resistance, high current capacity, demountable solder joint connections at multiple locations between no insulation (NI) superconductors and in particular between NI high temperature superconductors (HTS) such as may be used in NI-HTS magnets.
    Type: Application
    Filed: March 25, 2021
    Publication date: June 29, 2023
    Applicant: Massachusetts Institute of Technology
    Inventors: Brian LABOMBARD, William BECK, Theodore MOURATIDIS
  • Publication number: 20230170119
    Abstract: Magnets and magnet systems include stacked magnet baseplates. Each of the plates includes grooves that contain windings of a conductor (e.g. a high temperature superconductor) that generates a magnetic field when current is passed through. This field generates Lorentz forces in the stack that press the conductors in different directions and with different magnitudes. Thus, the plates are oppositely oriented (mirrored) so that these forces always press the conductors into the grooves, rather than pulling them out of the grooves. The conductors may be further reinforced in their grooves with solder or epoxy potting. Some stacks may have more plates in one orientation than in the mirrored orientation, because the Lorentz forces need not be symmetrical with respect to a midpoint of the stack, e.g. when the system experiences externally-applied magnetic fields. Additional, mirrored side plates may be added in some configurations.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 1, 2023
    Applicant: Massachusetts Institute of Technology
    Inventor: Brian LABOMBARD
  • Publication number: 20230146164
    Abstract: According to some aspects, techniques are described for designing non-insulated (NI) high temperature superconductor (HTS) magnets that mitigate problems that may arise during quench initiation and propagation. Coupling the HTS material to a co-conductor along its length reduces the effective resistance of the conductive path along the HTS material when it is not superconducting, and that this leads to numerous advantages for quench mitigation.
    Type: Application
    Filed: March 25, 2021
    Publication date: May 11, 2023
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Brian LABOMBARD, Krishna Kiran Kumar UPPALAPATI
  • Publication number: 20230073419
    Abstract: Schemes are described for conductor and coolant placement in stacked-plate superconducting magnets, including arranging coolant channels and conducting channels within the plates on opposing faces. If the two types of channels are aligned with one another across the plate stacks, the plates may be stacked such that the cooling channel in one plate is adjacent to the conducting channel of the neighboring plate. By stacking a number of these plates, therefore, cooling may be supplied to each conducting channel through the cooling channels of each neighboring plate. Moreover, by aligning the two types of channels, the stacks of plates may have improved mechanical strength because mechanical load paths through the entire stack that do not pass through any of the channels may be created. This arrangement of channels may produce a very strong stack of plates that can withstand high Lorentz loads.
    Type: Application
    Filed: March 25, 2021
    Publication date: March 9, 2023
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Brian LABOMBARD, Robert MUMGAARD, William BECK, Jeffrey DOODY
  • Publication number: 20220336130
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Applicants: Massachusetts Institute of Technology, Commonwealth Fusion System LLC
    Inventors: Brian LABOMBARD, Robert S. GRANETZ, James IRBY, Rui VIEIRA, William BECK, Daniel BRUNNER, Jeffrey DOODY, Martin GREENWALD, Zachary HARTWIG, Philip MICHAEL, Robert MUMGAARD, Alexey RADOVINSKY, Syun'ichi SHIRAIWA, Brandon N. SORBOM, John WRIGHT, Lihua ZHOU
  • Patent number: 11417464
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: August 16, 2022
    Assignees: Massachusetts Institute of Technology, Commonwealth Fusion Systems LLC
    Inventors: Brian Labombard, Robert S. Granetz, James Irby, Rui Vieira, William Beck, Daniel Brunner, Jeffrey Doody, Martin Greenwald, Zachary Hartwig, Philip Michael, Robert Mumgaard, Alexey Radovinsky, Syun'ichi Shiraiwa, Brandon N. Sorbom, John Wright, Lihua Zhou
  • Publication number: 20210313104
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Application
    Filed: June 11, 2021
    Publication date: October 7, 2021
    Inventors: Brian Labombard, Robert S. Granetz, James Irby, Rui Vieira, William Beck, Daniel Brunner, Jeffrey Doody, Martin Greenwald, Zachary Hartwig, Philip Michael, Robert Mumgaard, Alexey Radovinsky, Syun'ichi Shiraiwa, Brandon N. Sorbom, John Wright, Lihua Zhou
  • Patent number: 11094439
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: August 17, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian Labombard, Robert S. Granetz, James Irby, Rui Vieira, William Beck, Daniel Brunner, Jeffrey Doody, Martin Greenwald, Zachary Hartwig, Philip Michael, Robert Mumgaard, Alexey Radovinsky, Syun'ichi Shiraiwa, Brandon N. Sorbom, John Wright, Lihua Zhou
  • Publication number: 20200402693
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Application
    Filed: December 23, 2019
    Publication date: December 24, 2020
    Inventors: Alexey RADOVINSKY, Brian LABOMBARD, Daniel BRUNNER, Robert S. GRANETZ, James IRBY, Rui VIEIRA, William BECK, Jeffrey DOODY, Martin GREENWALD, Zachary HARTWIG, Philip MICHAEL, Robert MUMGAARD, Syun'ichi SHIRAIWA, Brandon N. SORBOM, John WRIGHT, Lihua ZHOU
  • Publication number: 20200279681
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 3, 2020
    Inventors: Alexey RADOVINSKY, Brian LABOMBARD, Daniel BRUNNER
  • Publication number: 20200211744
    Abstract: Described herein are concepts, system and techniques which provide a means to construct robust high-field superconducting magnets using simple fabrication techniques and modular components that scale well toward commercialization. The resulting magnet assembly—which utilizes non-insulated, high temperature superconducting tapes (HTS) and provides for optimized coolant pathways—is inherently strong structurally, which enables maximum utilization of the high magnetic fields available with HTS technology. In addition, the concepts described herein provide for control of quench-induced current distributions within the tape stack and surrounding superstructure to safely dissipate quench energy, while at the same time obtaining acceptable magnet charge time. The net result is a structurally and thermally robust, high-field magnet assembly that is passively protected against quench fault conditions.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 2, 2020
    Inventors: Brian LABOMBARD, Robert GRANETZ, James IRBY, Rui VIEIRA, William BECK, Daniel BRUNNER, Jeffrey DOODY, Martin GREENWALD, Zachary HARTWIG, Philip MICHAEL, Robert MUMGAARD, Alexey RADOVINSKY, Syun'ichi SHIRAIWA, Brandon N. SORBOM, John WRIGHT, Lihua ZHOU