Patents by Inventor Brian Large

Brian Large has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11881707
    Abstract: Systems and methods are provided for a battery management system (BMS) having a protection circuit. In one example, a vehicle battery system may include the BMS, the BMS including a cutoff circuit electrically coupled to the protection circuit, and a battery pack, a positive supply line of the battery pack being electrically coupled to the cutoff circuit, wherein the protection circuit may include each of an input electrically coupled to a control input of the cutoff circuit, an output electrically coupled to an output of the cutoff circuit, and a control input of the protection circuit electrically coupled to the output of the cutoff circuit. In some examples, the protection circuit may further include a low-current leakage transistor configured to maintain the cutoff circuit in an OFF state upon detection of a reverse bias voltage. In this way, the protection circuit may mitigate unexpected switching ON of the cutoff circuit.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: January 23, 2024
    Assignee: A123 SYSTEMS LLC
    Inventors: Yue Li, Weiwei Lin, Steve Gierlach, Brian Large, Jiaping Zhang, Ke Xu
  • Publication number: 20230253781
    Abstract: Systems and methods are provided for a battery management system (BMS) having a protection circuit. In one example, a vehicle battery system may include the BMS, the BMS including a cutoff circuit coupled to a short-circuit protection circuit, and a battery pack, wherein the short-circuit protection circuit may include a diode array, cathodes of the diode array being coupled to a positive terminal post of the battery pack and anodes of the diode array being coupled to a negative terminal post of the battery pack. In some examples, the cutoff circuit may further be coupled to a reverse bias protection circuit including a switchable current path arranged between a control input of the cutoff circuit and an output of the cutoff circuit. In this way, the vehicle battery system may be protected from unexpected voltage conditions via the BMS redirecting and dissipating excess current away from the cutoff circuit.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: Yue Li, Steve Gierlach, Weiwei Lin, Brian Large, Jiaping Zhang, Ke Xu
  • Publication number: 20230253780
    Abstract: Systems and methods are provided for a battery management system (BMS) having a protection circuit. In one example, a vehicle battery system may include the BMS, the BMS including a cutoff circuit coupled to a short-circuit protection circuit, and a battery pack, wherein the short-circuit protection circuit may include a diode array, cathodes of the diode array being coupled to a positive terminal post of the battery pack and anodes of the diode array being coupled to a negative terminal post of the battery pack. In some examples, the cutoff circuit may further be coupled to a reverse bias protection circuit including a switchable current path arranged between a control input of the cutoff circuit and an output of the cutoff circuit. In this way, the vehicle battery system may be protected from unexpected voltage conditions via the BMS redirecting and dissipating excess current away from the cutoff circuit.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 10, 2023
    Inventors: Yue Li, Steve Gierlach, Weiwei Lin, Brian Large, Jiaping Zhang, Ke Xu
  • Patent number: 11670938
    Abstract: Systems and methods are provided for a battery management system (BMS) having a protection circuit. In one example, a vehicle battery system may include the BMS, the BMS including a cutoff circuit coupled to a short-circuit protection circuit, and a battery pack, wherein the short-circuit protection circuit may include a diode array, cathodes of the diode array being coupled to a positive terminal post of the battery pack and anodes of the diode array being coupled to a negative terminal post of the battery pack. In some examples, the cutoff circuit may further be coupled to a reverse bias protection circuit including a switchable current path arranged between a control input of the cutoff circuit and an output of the cutoff circuit. In this way, the vehicle battery system may be protected from unexpected voltage conditions via the BMS redirecting and dissipating excess current away from the cutoff circuit.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: June 6, 2023
    Assignee: A123 Systems, LLC
    Inventors: Yue Li, Steve Gierlach, Weiwei Lin, Brian Large, Jiaping Zhang, Ke Xu
  • Patent number: 11584462
    Abstract: A panel includes a standoff formed from a wall extended in a height direction from an exterior surface of the panel. The wall is formed from a first wall section and a second wall section that is offset from the first wall section in a lateral direction of the panel along the exterior surface of the panel. A stopper hole is defined in the panel and extended in the height direction, in parallel with the first wall section and the second wall section, from the exterior surface of the panel. The stopper hole receives a stopper. The stopper hole is interposed between and separates the first wall section and the second wall section along the exterior surface of the panel, or is offset from the wall of the standoff in the lateral direction of the panel along the exterior surface of the panel.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: February 21, 2023
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Francis M. Madrid, Brian Large
  • Publication number: 20220306221
    Abstract: A panel includes a standoff formed from a wall extended in a height direction from an exterior surface of the panel. The wall is formed from a first wall section and a second wall section that is offset from the first wall section in a lateral direction of the panel along the exterior surface of the panel. A stopper hole is defined in the panel and extended in the height direction, in parallel with the first wall section and the second wall section, from the exterior surface of the panel. The stopper hole receives a stopper. The stopper hole is interposed between and separates the first wall section and the second wall section along the exterior surface of the panel, or is offset from the wall of the standoff in the lateral direction of the panel along the exterior surface of the panel.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Inventors: Francis M. MADRID, Brian LARGE
  • Publication number: 20210384560
    Abstract: Systems and methods are provided for a battery management system (BMS) having a protection circuit. In one example, a vehicle battery system may include the BMS, the BMS including a cutoff circuit coupled to a short-circuit protection circuit, and a battery pack, wherein the short-circuit protection circuit may include a diode array, cathodes of the diode array being coupled to a positive terminal post of the battery pack and anodes of the diode array being coupled to a negative terminal post of the battery pack. In some examples, the cutoff circuit may further be coupled to a reverse bias protection circuit including a switchable current path arranged between a control input of the cutoff circuit and an output of the cutoff circuit. In this way, the vehicle battery system may be protected from unexpected voltage conditions via the BMS redirecting and dissipating excess current away from the cutoff circuit.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 9, 2021
    Inventors: Yue Li, Steve Gierlach, Weiwei Lin, Brian Large, Jiaping Zhang, Ke Xu
  • Publication number: 20210384720
    Abstract: Systems and methods are provided for a battery management system (BMS) having a protection circuit. In one example, a vehicle battery system may include the BMS, the BMS including a cutoff circuit electrically coupled to the protection circuit, and a battery pack, a positive supply line of the battery pack being electrically coupled to the cutoff circuit, wherein the protection circuit may include each of an input electrically coupled to a control input of the cutoff circuit, an output electrically coupled to an output of the cutoff circuit, and a control input of the protection circuit electrically coupled to the output of the cutoff circuit. In some examples, the protection circuit may further include a low-current leakage transistor configured to maintain the cutoff circuit in an OFF state upon detection of a reverse bias voltage. In this way, the protection circuit may mitigate unexpected switching ON of the cutoff circuit.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 9, 2021
    Inventors: Yue Li, Weiwei Lin, Steve Gierlach, Brian Large, Jiaping Zhang, Ke Xu
  • Publication number: 20080078673
    Abstract: An electrode for use in a deionization apparatus includes a conductive material that is in a granular form and is arranged in a layer that is defined by a first face and a second face. The electrode includes a substrate that is disposed against the first face, and a first member that is disposed against the second face and is formed to permit a fluid to pass through the first member and into contact with the granular conductive material to permit absorption of ions by the granular conductive material.
    Type: Application
    Filed: September 26, 2007
    Publication date: April 3, 2008
    Applicant: The Water Company LLC
    Inventors: Brian Elson, Brian Large, Peter Norman, Richard Hoover
  • Publication number: 20060081540
    Abstract: A system for controlling the operation of conductive plates immersed in an aqueous solution, such as in water treatment applications. The system allows independent control of the current sourced or sunk by each of a plurality of plates. The system also allows each plate to be placed in a high-impedance state in which no appreciable current is sourced or sunk by the system. A plate or a group of plates is controlled by a control module which interfaces to a central controller such as a personal computer or a programmable logic controller. Multiple control modules can be added to a system to support multiple plates, each of which can be controlled individually from the central controller. Each control module is also capable of sensing voltage and current at its corresponding plate and providing that information to the central controller.
    Type: Application
    Filed: September 30, 2004
    Publication date: April 20, 2006
    Inventor: Brian Large