Patents by Inventor Brian Leonard Verrilli

Brian Leonard Verrilli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11077614
    Abstract: A novel ledge forming system used to attach a polymer retention hub to a thin wall nozzle core to provide an efficient way to produce a conjunct nozzle. The inventive apparatus provides a means for assembly of components by a method involving use of a press with a heating element to elevate temperature of a thermoplastic polymer to permit formation of a ledge that overhangs the flange of a nozzle core, mechanically locking components together. Execution of the process is rapid, low cost and eliminates damage to the thin wall of the core that would occur if the polymer retention hub were molded around the nozzle core.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: August 3, 2021
    Inventor: Brian Leonard Verrilli
  • Publication number: 20190016047
    Abstract: A novel ledge forming system used to attach a polymer retention hub to a thin wall nozzle core to provide an efficient way to produce a conjunct nozzle. The inventive apparatus provides a means for assembly of components by a method involving use of a press with a heating element to elevate temperature of a thermoplastic polymer to permit formation of a ledge that overhangs the flange of a nozzle core, mechanically locking components together. Execution of the process is rapid, low cost and eliminates damage to the thin wall of the core that would occur if the polymer retention hub were molded around the nozzle core.
    Type: Application
    Filed: August 30, 2017
    Publication date: January 17, 2019
    Inventor: Brian Leonard Verrilli
  • Patent number: 9802031
    Abstract: A novel design of a polymer retention hub created having an innovative feature used to permanently attach a thin wall nozzle core without use of adhesives or ancillary parts to form a conjunct nozzle. Additional polymer in the correct amount is molded into a polymer retention hub in close proximity to a location where a mechanical lock must be formed to join the two components together. The inventive design of the polymer retention hub is configured to produce an enclosed cavity with the strength required for separation of a nozzle core from a standard taper.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 31, 2017
    Inventor: Brian Leonard Verrilli
  • Publication number: 20140135714
    Abstract: A novel design and method of attachment of a retention device to a monolithic thin walled deep drawn core provides an efficient system to produce a complete conjunct nozzle assembly. The design of the molded retention device contains the provision for joining the parts together without the use of adhesives or ancillary parts. Additional polymer in the correct amount is molded into the retention device in close proximity to the location where a mechanical lock must be formed to join the two components together. An inventive tool enables the technique for shut off of the monolithic core from the heated thermoplastic polymer allowing formation of a ledge that overhangs the flange of the core. Execution of the process is rapid, low cost and it eliminates damage to the thin wall of the core that would occur if the retention device were molded around the core.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Inventor: Brian Leonard Verrilli
  • Patent number: 8702405
    Abstract: A pump cartridge which has a polymer shell with moveable cores inserted from each end. The polymer shell contains perpendicular passages along the top for connection of fluid supply and prime chambers. Statically mounted elastomers adjacent to perpendicular passages provide sealing around movable cores. Fluid moves by translation within the pump cartridge by filling the cavity volume between the oblate ends of the moveable cores with a liquid and matching the rotation angle and translation position of advancing left moveable core with retreating right moveable core, maintaining equivalent volume. Both moveable cores can be directed toward one another or one moveable core can remain stationary while the other advances to extrude fluid. Pump cartridge rotation changes the angle of the fluid exit passage.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: April 22, 2014
    Inventor: Brian Leonard Verrilli
  • Publication number: 20110073620
    Abstract: A novel method of designing a twisting translational pump cartridge by utilizing a polymer shell with moveable cores inserted from each end. The polymer shell contains two perpendicular passages along the top for connection of a prime fluid chamber, a bulk fluid supply chamber and a fluid reservoir. These perpendicular passages and corresponding connection details are arranged in a fashion that is perpendicular to the axis of the polymer shell that comprises the pump cartridge cavity. Directly below at a different relative position also perpendicular to the axis of the pump cartridge cavity is an exit perpendicular passage for extrusion of fluid. The pump cartridge contains no valves or ancillary passages to direct flow between the different machine states of prime, refill, translate and dispense. The states are activated by changing the pitch of the twist or speed to determine relative position of the moveable cores with respect to each passage.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 31, 2011
    Inventor: Brian Leonard Verrilli
  • Publication number: 20080118376
    Abstract: A novel method of designing a pump by utilizing a cylinder with pistons inserted from each end. The cylinder contains two ports along the top for connection of a prime fluid chamber, a bulk fluid supply chamber and a fluid reservoir. These ports and corresponding connection details are arranged in a fashion that is perpendicular to the axis of the cylinder that comprises the pump chamber. Directly below at a different relative position also perpendicular to the axis of the pump chamber is an exit port for extrusion of fluid. The pump contains no valves or ancillary passages to direct flow between the different machine states of prime, refill, translate and dispense. The states are activated by relative position of the pistons with respect to each port. Fluid moves by translation within the pump by filling the chamber volume between the two pistons with a liquid and synchronizing the advance of the left piston with the retreat of the right piston.
    Type: Application
    Filed: November 17, 2007
    Publication date: May 22, 2008
    Inventor: Brian Leonard Verrilli
  • Patent number: 7190891
    Abstract: A novel nozzle heater design, that facilitates fast thermal response on demand, to achieve rapid reduction in viscosity, allowing fluid to flow through the exit aperture of the nozzle with less pressure, reduced surface tension and elastic behavior at break off. A rapid cool down after a temperature spike alleviates problems associated with prolonged exposure of the fluid at temperature. Prolonged exposure manifests the following problems: volatiles are driven off, premature cross-linking is initiated and fluid in the heated region is subsequently ruined. The fluid path heater is designed to prevent the occurrence of these problems by virtue of the exceptionally fast thermal response rate. This heater design requires no fasteners and is simple to assemble; parts are held in place by inherent geometric relationships and connection to the nozzle hub is tool-less and self-compensating for tolerance variation in the nozzle hub to which it is connected.
    Type: Grant
    Filed: January 17, 2004
    Date of Patent: March 13, 2007
    Inventor: Brian Leonard Verrilli